Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Ecotoxicol Environ Saf ; 278: 116454, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38749199

AIM: We reveal the mechanism of action whereby ambient PM2.5 promotes kidney injury. METHODS: Using C57BL/6 mice, the effects of PM2.5 exposure on the acute kidney injury (AKI) were investigated, including renal function changes, expression of inflammatory cytokines, histopathological changes, as well as activation of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3(NLRP3). The effects of PM2.5 on renal injury after NLRP3 inhibition were explored using NLRP3 inhibitor (MCC950) and NLRP3 knockout mice. The effects of PM2.5 on the inflammatory response of renal macrophages were investigated at the cellular level. RESULTS: PM2.5 exposure could promote kidney injury, NLRP3 activation and inflammatory response in mice. After using MCC950 and NLRP3 knockout mice, the effects of PM2.5 and the kidney injury could be inhibited. The cellular-level results also suggested that MCC950 could inhibit the effects of PM2.5. CONCLUSION: PM2.5 can promote the progression of AKI and aggravate tissue inflammation through NLRP3, which is an important environmental toxicological mechanism of PM2.5.


Acute Kidney Injury , Inflammation , Macrophages , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Particulate Matter , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Particulate Matter/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Mice , Macrophages/drug effects , Inflammation/chemically induced , Male , Sulfonamides/toxicity , Sulfonamides/pharmacology , Indenes/toxicity , Air Pollutants/toxicity , Furans/toxicity , Sulfones/toxicity
2.
Brain Res ; 1835: 148932, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38609032

Alzheimer's disease (AD) is a primary degenerative encephalopathy that first appeared as a decline in memory and learning skills. Over time, the condition's severity grew. Palmatine (Pal) alleviates Alzheimer's disease symptoms, which has neuroprotective benefits. Numerous investigations have demonstrated a close relationship among AD and gut structure changes. The aim of the research was investigating whether the improvement of Pal on AD is linked to regulating gut flora and autophagy. First, we used Aß1-40 to induce apoptosis in HT22 cells. After Pal treatment, apoptosis can be improved. Then, We used bilateral intracranial hippocampal injection of Aß1-40 for establishing the AD model, after treatment with Pal, the morris water maze experiment and eight-arm maze test demonstrated that Pal enhanced the AD rats' capacity for learning and memory, HE staining illustrated that Pal improved the morphological abnormalities of brain cells and gut tissue damage. Pal reduced the death of hippocampus neurons, as shown by Nissl staining. Pal substantially reduced Tau hyperphosphorylation and Aß accumulation in the brain, according to immunohistochemical labelling. Pal improved the expression of LC3, Beclin 1, AMPK, and suppressed the expression of mTOR and P62, as validated by RT-qPCR and immunofluorescence labelling. This suggests that Pal's treatment of AD may be associated with the control of the AMPK/mTOR autophagy signalling system. 16S rRNA sequencing and short-chain fatty acids (SCFAs) content detection analysis illustrated that Pal has the potential to enhance the content of SCFAs, reverse the alterations in gut microorganisms. It has been showed by the study that Pal could improve AD by activating autophagy signaling pathway and improving gut barrier changes.


Alzheimer Disease , Autophagy , Berberine Alkaloids , Cognitive Dysfunction , Disease Models, Animal , Gastrointestinal Microbiome , Hippocampus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Gastrointestinal Microbiome/drug effects , Autophagy/drug effects , Berberine Alkaloids/pharmacology , Rats , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Amyloid beta-Peptides/metabolism , Maze Learning/drug effects , Apoptosis/drug effects
3.
Aging (Albany NY) ; 16(6): 5703-5710, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38535999

AIM: This work aimed to investigate the role of M1 intestinal macrophages-derived exosomes (M1-Exo) in colitis and its mechanism. METHODS: M1 polarization of intestinal macrophages was induced in vitro, and their exosomes were extracted and identified. Thereafter, the DSS-induced colitis mouse model was built. Each mouse was given intraperitoneal injection of exosomes, and then mouse weight and DAI were dynamically monitored. In addition, the levels of cytokines were detected by ELISA. After treatment with the TLR4 inhibitor Resatorvid, the effects of M1 macrophages-derived exosomes were observed. Besides, the mouse intestinal epithelial cells were cultured in vitro for observing function of M1-Exo. RESULTS: M1-exo aggravated the colitis and tissue inflammation in mice, activated the TLR4 signal, and destroyed the mucosal barrier. But M0 macrophages-derived exosomes (M0-Exo) did not have the above effects. Resatorvid treatment antagonized the roles of M1-exo. Moreover, as confirmed by cellular experiments in vitro, M1-exo destroyed mucosal barrier. CONCLUSION: M1-exo serve as the pro-inflammatory mediator, which can promote mouse colitis progression by activating TLR4 signal.


Colitis , Exosomes , Sulfonamides , Animals , Mice , Toll-Like Receptor 4 , Colitis/chemically induced , Macrophages
4.
Phytomedicine ; 128: 155519, 2024 Jun.
Article En | MEDLINE | ID: mdl-38492365

BACKGROUND: Depression is a common mental illness characterised by abnormal and depressed emotions. Total paeony glycoside (TPG) is a naturally active saponin extracted from the traditional Chinese medicine Radix Paeoniae rubra. However, the antidepressant and neuroinflammatory effects of TPG have not been thoroughly studied. PURPOSE: To study the therapeutic potential of TGP in depression caused by neuronal injury and neuroinflammation and to explore the mechanism of TGP and the relationship between the NLRP3 inflammasome, pyroptosis, and autophagy. STUDY DESIGN: A chronic unpredictable mild stress (CUMS)-induced depression model and a cell model of corticosterone (CORT)-induced hippocampal neuron injury were established to evaluate the therapeutic effects of TPG. METHODS: The composition of TPG was analysed using high-performance liquid chromatography and mass spectrometry. The effects of TPG and fluoxetine on depression-like behaviour, neuronal injury, neuroinflammation, pyroptosis, and mitochondrial autophagy in the mice models were evaluated. RESULTS: TGP alleviated depression-like behaviours in mice and inhibited hippocampal neuronal apoptosis. The secretion of inflammatory cytokines was significantly reduced in CORT-induced hippocampal neuron cells and in the serum of a mouse model of CUMS-induced depression. In addition, TGP treatment reduced the levels of NLRP3 family pyrin structural domains, including NLRP3, pro-caspase-1, caspase-1, and IL-1ß, and the pyroptosis related proteins such as GSDMD-N. Importantly, TPG attenuated mitochondrial dysfunction, promoted the clearance of damaged mitochondria, and the activation of mitochondrial autophagy, which reduced ROS accumulation and NLRP3 inflammasome activation. An in-depth study observed that the regulatory effect of TPG on autophagy was attenuated by the autophagy inhibitor 3-methyladenine (3-MA) in vitro and in vivo. However, administration of the caspase-1 inhibitor Belnacasan (VX-765) successfully inhibited pyroptosis and showed a synergistic therapeutic effect with TPG. CONCLUSION: These results indicate that TPG can repair neuronal damage by activating autophagy, restoring mitochondrial function, and reducing inflammation-mediated pyroptosis, thereby playing an important role in the alleviation of neuroinflammation and depression. This study suggests new potential drugs and treatment strategies for neuroinflammation-related diseases and depression.


Antidepressive Agents , Autophagy , Depression , Disease Models, Animal , Glycosides , Hippocampus , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Paeonia , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Autophagy/drug effects , Antidepressive Agents/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Glycosides/pharmacology , Pyroptosis/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Depression/drug therapy , Paeonia/chemistry , Mice, Inbred C57BL , Neurons/drug effects , Neuroinflammatory Diseases/drug therapy , Drugs, Chinese Herbal/pharmacology
5.
World J Stem Cells ; 16(2): 176-190, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38455106

BACKGROUND: Cartilage defects are some of the most common causes of arthritis. Cartilage lesions caused by inflammation, trauma or degenerative disease normally result in osteochondral defects. Previous studies have shown that decellularized extracellular matrix (ECM) derived from autologous, allogenic, or xenogeneic mesenchymal stromal cells (MSCs) can effectively restore osteochondral integrity. AIM: To determine whether the decellularized ECM of antler reserve mesenchymal cells (RMCs), a xenogeneic material from antler stem cells, is superior to the currently available treatments for osteochondral defects. METHODS: We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70% confluence; 50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition. Decellularized sheets of adipocyte-derived MSCs (aMSCs) and antlerogenic periosteal cells (another type of antler stem cells) were used as the controls. Three weeks after ascorbic acid stimulation, the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints. RESULTS: The defects were successfully repaired by applying the ECM-sheets. The highest quality of repair was achieved in the RMC-ECM group both in vitro (including cell attachment and proliferation), and in vivo (including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues). Notably, the antler-stem-cell-derived ECM (xenogeneic) performed better than the aMSC-ECM (allogenic), while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells. CONCLUSION: Decellularized xenogeneic ECM derived from the antler stem cell, particularly the active form (RMC-ECM), can achieve high quality repair/reconstruction of osteochondral defects, suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.

6.
Heliyon ; 10(2): e24782, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38312676

As a traditional Chinese herbal medicine, Cornu Cervi Degelatinatum (CCD) has the effect of warming the kidney to support yang, astringing, and stopping bleeding, and is used for spleen kidney yang deficient (SKYD). This experiment was to investigate the therapeutic effects of different processes of CCD on SKYD type ulcerative colitis (UC) rats and to explore its impact on the intestinal flora of rats. METHODS: ELISA was used to study the anti-inflammatory activity of Cornu Cervi Degelatinatum processed with water (WCCD) and Cornu Cervi Degelatinatum processed with vinegar (VCCD). 16SrRNA and transcriptome sequencing were used to detect the composition of rat intestinal flora and gene expression; RT-PCR and Western blot were used to verify the role of WCCD and VCCD in treating UC. RESULTS: WCCD and VCCD have therapeutic effects on UC, could reduce tissue damage. VCCD performed better in improving Bacteroidetes/Firmicutes ratios and species evenness and abundance; performed better in increasing the quantity of lactobacillus. VCCD simultaneously inhibit the intestinal inflammatory response through NCK2, PAK4, and JNK signaling pathways. CONCLUSIONS: WCCD and VCCD play a therapeutic role in UC by regulating the proportion of different flora in the intestinal flora. VCCD regulates the intestinal flora and inflammatory response by interfering with the NCK2, PAK4 and JNK signaling pathways.

7.
Food Funct ; 15(5): 2587-2603, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38353975

Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.


Calcium , Deer , Mice , Animals , Calcium/metabolism , Deer/metabolism , Cell Proliferation , Calcium, Dietary/metabolism , Peptides/pharmacology , Peptides/metabolism , Ions/metabolism , Ions/pharmacology , Osteoblasts
9.
Int Immunopharmacol ; 126: 111307, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38035408

OBJECTIVE: To investigate the long-term effects of polystyrene (PS) exposure on acute liver injury. METHODS: The carbon tetrachloride-induced acute injury mouse model was subjected to long-term PS exposure. Pyroptosis was inhibited by knocking out Gsdmd in mice or treating with the Gsdmd inhibitor necrosulfonamide (NSA) to evaluate the effect of PS on liver injury. Kupffer cells were used as a cellular model to examine the effects of PS on cell pyroptosis, lactate dehydrogenase release rate, structural integrity (propidium iodide staining), and inflammatory factor levels. RESULTS: In mice, PS exposure exacerbated acute liver injury, which was mitigated upon Gsdmd knockout (KO) or NSA treatment along with the downregulation of tissue inflammatory response. In vitro studies demonstrated that PS promoted Kupffer cell pyroptosis, which was suppressed upon Gsdmd KO or NSA treatment along with the alleviation of inflammation. CONCLUSION: These results suggest that long-term PS exposure exacerbates acute liver injury by promoting Kupffer cell pyroptosis, which is one of the hepatotoxic mechanisms of PS.


Kupffer Cells , Polystyrenes , Mice , Animals , Polystyrenes/pharmacology , Microplastics/pharmacology , Plastics/pharmacology , Pyroptosis , Intracellular Signaling Peptides and Proteins/genetics , Liver
10.
J Ethnopharmacol ; 321: 117508, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38065351

ETHNOPHARMACOLOGICAL RELEVANCE: Antler glue is a classic medicinal to enhance sexual function in traditional Chinese medicine (TCM), which was first recorded in Shen Nong Ben Cao Jing (Shennong's Classic of the Materia Medica). Vinegar-processing is a classic method of processing traditional Chinese medicine. The method of preparing antler glue by boiling antlers in vinegar and then concentrating them is recorded in Lei Gong Pao Zhi Lun (Master Lei's Discourse on Medicinal Processing). In modern times, the typical processing method of antler glue is water extraction and concentration. However, it is not clear whether there is a difference in the effect of these two processing methods on the chemical composition and pharmacological activity of antler glue. AIM OF THE STUDY: The Chinese Pharmacopoeia (2020) records that the processing method of antler glue is water extraction and concentration. But Lei Gong Pao Zhi Lun differs in Chinese Pharmacopoeia (2020), which records the processing method of vinegar extraction and concentration. The effect of the two processing methods on antler glue's chemical composition and pharmacological activity is unknown. So this study aimed to elucidate the difference between different processing methods on the chemical composition and the treatment effect on oligoasthenospermia of antler glue. MATERIALS AND METHODS: So the automatic amino acid analyzer is used to determine the amino acid content of two different processing methods of antler glue. Proteomics was performed to detect the protein components of two different processing methods of antler glue and analyze them. Cyclophosphamide-induced mice models of oligoasthenospermia were used to study the different pharmacological effects of antler glue in two different processing methods. An automatic sperm analyzer observed the quantity and quality of sperm in mice epididymis. Serum sex hormone testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels in mice were tested using the enzyme-linked immunosorbent assay (ELISA) kits. Hematoxylin-eosin (H&E) staining was used to analyze pathological alterations in mouse testicular tissue. The transcriptome has been used to reveal the potential mechanism of antler glue in treating oligoasthenospermia. Mitochondrial complex activity assay kits were used to assay the activity of mitochondrial respiratory chain complex I-V in mouse testicular tissue. Western blot was used to determine the expression of related proteins in mouse testicular tissue. RESULTS: Vinegar-processing can increase the alanine, proline, and glycine content in antler glue, reduce the length of protein peptides in antler glue, and produce a variety of unique proteins. Vinegar-processed antler glue (VAG) increased sperm density, sperm survival, sperm viability, and serum sex hormone levels in oligozoospermic mice. It reversed testicular damage caused by cyclophosphamide, and the effects were differently superior to those of water-processed antler glue (WAG). In addition, transcriptomics and related experiments have shown that VAG can increase the expression of Ndufa2, Uqcr11, Cox6b1, and Atp5i genes and proteins in mouse testis, thus promoting adenosine diphosphate (ATP) synthesis by increasing the activity of mitochondrial respiratory chain complexes I, III, IV and V. By promoting the oxidative phosphorylation process to produce more ATP, VAG can achieve the therapeutic effect of oligoasthenospermia. CONCLUSION: Vinegar-processing method can increase the content of active ingredients in antler glue. VAG increases ATP levels in the testes by promoting the process of oxidative phosphorylation to treat oligozoospermia.


Antlers , Oligospermia , Humans , Mice , Male , Animals , Antlers/chemistry , Acetic Acid , Semen/chemistry , Proteins , Gonadal Steroid Hormones , Amino Acids , Cyclophosphamide , Adenosine Triphosphate
11.
Phytother Res ; 38(1): 231-240, 2024 Jan.
Article En | MEDLINE | ID: mdl-37857401

To explore the antidepressant effects and targets of atractylenolide I (ATR) through a network pharmacological approach. Relevant targets of ATR and depression analyzed by network pharmacology were scored (identifying 5-HT2A targets). Through elevated plus maze, open field, tail suspension, and forced swimming tests, the behavioral changes of mice with depression (chronic unpredictable mild stress [CUMS]) were examined, and the levels of neurotransmitters including serotonin, dopamine, and norepinephrine (5-HT, DA, and NE) were determined. The binding of ATR to 5-HT2A was verified by small molecular-protein docking. ATR improved the behaviors of CUMS mice, elevated their levels of neurotransmitters 5-HT, DA, and NE, and exerted a protective effect on their nerve cell injury. After 5-HT2A knockout, ATR failed to further improve the CUMS behaviors. According to the results of small molecular-protein docking and network pharmacological analysis, ATR acted as an inhibitor by binding to 5-HT2A. ATR can improve the behaviors and modulate the neurotransmitters of CUMS mice by targeting 5-HT2A.


Depression , Lactones , Serotonin , Sesquiterpenes , Mice , Animals , Depression/drug therapy , Depression/metabolism , Serotonin/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Neurotransmitter Agents/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus , Behavior, Animal
12.
J Biochem Mol Toxicol ; 38(1): e23544, 2024 Jan.
Article En | MEDLINE | ID: mdl-37815058

To investigate the key molecular mechanisms of palmatine for the treatment of neuroinflammation through modulation of a pathway using molecular docking, molecular dynamics (MD) simulation combined with network pharmacology, and animal experiments. Five alkaloid components were obtained from the traditional Chinese medicine Huangteng through literature mining. Molecular docking and MD simulation with acetylcholinesterase were used to screen palmatine. At the animal level, mice were injected with LPS intracerebrally to cause a neuroinflammatory model, and the Morris water maze experiment was performed to examine the learning memory of mice. Anxiety levels were tested using the autonomous activity behavior experiment with the open field and elevated behavior experiments. HE staining and Niss staining were performed on brain tissue sections to observe morphological lesions and apoptosis; serum was examined for inflammatory factors TNF-α, IL-6, and IL-1ß; Western blot was performed to detect the protein expression. The expression of PI3K/AKT/NFkB signaling pathway-related proteins was examined by Western blot. The results of network pharmacology showed that the screening of palmatine activation containing the PI3K/Akt/NFkB signaling pathway exerts antineuroinflammatory effects. Results from behavioral experiments showed that Pal enhanced learning memory in model mice, improved anxiety behavior, and significantly improved brain damage caused by neuroinflammation. The results of HE staining and Niss staining of brain tissue sections showed that palmatine could alleviate morphological lesions and nucleus damage in brain tissue. Palmatine improved the levels of serum inflammatory factors TNF-α, IL-6, and IL-1ß. SOD, MDA, CAT, ACH, and ACHE in the hippocampus were improved. Western blot results showed that palmatine administration ameliorated LPS-induced neuroinflammation through the PI3K/Akt/NFkB pathway.


Berberine Alkaloids , NF-kappa B , Proto-Oncogene Proteins c-akt , Mice , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/toxicity , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Interleukin-6 , Acetylcholinesterase , Molecular Docking Simulation
13.
CNS Neurosci Ther ; 30(3): e14444, 2024 03.
Article En | MEDLINE | ID: mdl-37650449

AIM: We investigated the effects and target of gastrodin (GAS) for treating depression through network pharmacology combined with experimentation. METHODS: The therapeutic target and signal of GAS for depression were analyzed by network pharmacology. Depression in mice was mimicked with a chronic unpredictable mouse stress (CUMS) model. Through open field, elevated plus maze, forced swimming, and tail suspension tests, the effects of GAS on the CUMS mice behaviors were examined, and the levels of neurotransmitters were detected. The histopathological changes were assayed by H&E and IHC staining, and the protein expressions were detected by Western blotting. Small molecule-protein docking and molecular dynamics experiments were conducted to simulate the binding mode between GAS and Caspase-3. RESULTS: Network pharmacological analysis revealed that Caspase-3 was the action target of GAS. GAS could improve depression-like behaviors in CUMS mice, elevate their neurotransmitter levels, ameliorate their nerve cell injury, and inhibit their Caspase-3 expression. After knocking out Caspase-3, the effects of GAS were inhibited. Molecular dynamics simulation and small molecule-protein docking found that GAS bound to Caspase-3 at SER25, inhibiting the maturation and activation of Caspase-3. CONCLUSION: We find that GAS can act as a Caspase-3 inhibitor, which improves depression-like behaviors and nerve cell injury in CUMS mice by inhibiting Caspase-3-mediated apoptosis.


Benzyl Alcohols , Depression , Glucosides , Neurons , Mice , Animals , Depression/drug therapy , Depression/metabolism , Caspase 3/metabolism , Neurons/metabolism , Apoptosis , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus/metabolism
14.
J Ethnopharmacol ; 319(Pt 3): 117284, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37844741

ETHNOPHARMACOLOGY RELEVANCE: Sanghuangporus vaninii (S. vaninii), as a traditional large medicinal fungus, has a history of more than 2000 years in Chinese history and has been widely used to treat female diseases such as vaginal discharge, amenorrhea, and uterine bleeding, and recent pharmacological studies have also found that it has antioxidant, anti-inflammatory, and anti-tumor physiological activity, which has received more and more attention. AIM OF THE STUDY: The objective was to evaluate cytotoxicity and the acute, subacute toxicity, and in vitro antioxidant activity of S. vaninii crude polysaccharide (SVP). MATERIALS AND METHODS: The monosaccharide composition of SVP was determined by HPLC (high-performance liquid chromatography). The cytotoxicity of different concentrations of SVP on three types of cells (HT-22, Kupffer macrophages, HEK293) was assessed using CCk-8. The acute toxicity in vivo was evaluated for 14 days after the administration of SVP (2500,5000, or 10,000 mg/mL). For the evaluation of subacute toxicity, mice were daily treated for 28 days with SVP (2500,5000, or 10,000 mg/mL). In addition, DPPH, hydroxyl radical, and superoxide anion radical were used to evaluate the in vitro antioxidant activity of SVP. RESULTS: SVP was not toxic in all three cell lines tested. In vitro antioxidant tests on the extracts showed that SVP possessed a strong antioxidant capacity in vitro. In the acute study, the no-observed-adverse-effect level (NOAEL) in male and female rats was 10,000 mg/kg body weight. There were also no deaths or severe toxicity associated with SVP in subacute studies. However, SVP treatment had a decreasing effect on body weight in mice of both sexes (2500, 5000, and 10000 mg/kg). At doses (5000 and 10,000 mg/kg), SVP had a reduced effect on food intake in both male and female mice. In addition, there were significant effects on organ coefficients of the liver, lung, and kidney. Hematological analysis showed significantly lower LYM (%) values in mice of both sexes, with significantly lower MCH (pg) values obtained in males (5000 mg/kg and 10000 mg/kg) and higher GRAN (%) values in females. In addition, the RDW-SD (fL) values were significantly lower in the male mice given the highest dose. Biochemical tests showed that there were no significant changes in ALT, AST, TP, and Cr levels after SVP treatment. In histopathological analysis, mild liver toxicity was observed in both female mice treated with 10,000 mg/kg SVP. CONCLUSION: The extract of SVP showed a predominance of polysaccharide compounds, with non-toxic action in vivo. Our approach revealed SVP on the chemical composition and suggests a high margin of safety in the popular use of medicinal fungi. In conclusion, our results suggest that SVP is safe, and can be used as health care products and food.


Antioxidants , Plant Extracts , Rats , Mice , Humans , Male , Female , Animals , Antioxidants/toxicity , Plant Extracts/toxicity , HEK293 Cells , Toxicity Tests, Acute , Body Weight
15.
Molecules ; 28(23)2023 Nov 25.
Article En | MEDLINE | ID: mdl-38067501

Chlorpyrifos (CPF) plays a vital role in the control of various pests in agriculture and household life, even though some studies have indicated that CPF residues pose a significant risk to human health. Baicalin (BA) is a flavonoid drug with an obvious effect on the prevention and treatment of liver diseases. In this study, the protective effect of BA in vitro and in vivo was investigated by establishing a CPF-induced AML12 cell damage model and a CPF-induced Kunming female mouse liver injury model. The AML12 cell damage model indicated that BA had a good positive regulatory effect on various inflammatory factors, redox indexes, and abnormal apoptosis factors induced by CPF. The liver injury model of female mice in Kunming showed that BA significantly improved the liver function indexes, inflammatory response, and fibrosis of mice. In addition, BA alleviated CPF-induced AML12 cell damage and Kunming female mouse liver injury by enhancing autophagy and regulating apoptosis pathways through Western blotting. Collectively, these data suggest that the potential mechanism of BA is a multi-target and multi-channel treatment for chlorpyrifos-induced liver injury.


Chemical and Drug Induced Liver Injury, Chronic , Chlorpyrifos , Insecticides , Female , Mice , Humans , Animals , Chlorpyrifos/toxicity , Chlorpyrifos/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Oxidative Stress , Flavonoids/pharmacology , Flavonoids/metabolism , Liver , Insecticides/pharmacology
16.
Molecules ; 28(23)2023 Dec 04.
Article En | MEDLINE | ID: mdl-38067664

Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.


Ginsenosides , Panax , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Quality of Life , Nervous System
17.
Molecules ; 28(24)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38138445

Alzheimer's disease is a common degenerative disease which has a great impact on people's daily lives, but there is still a certain market gap in the drug research about it. Palmatine, one of the main components of Huangteng, the rattan stem of Fibraurea recisa Pierre (Menispermaceae), has potential in the treatment of Alzheimer's disease. The aim of this study was to evaluate the neuroprotective effect of palmatine on amyloid beta protein 25-35-induced rat pheochromocytoma cells and AD mice and to investigate its mechanism of action. CCK8 assays, ELISA, the Morris water maze assay, fluorescent probes, calcein/PI staining, immunofluorescent staining and Western blot analysis were used. The experimental results show that palmatine can increase the survival rate of Aß25-35-induced PC12 cells and mouse hippocampal neurons, reduce apoptosis, reduce the content of TNF-α, IL-1ß, IL-6, GSH, SOD, MDA and ROS, improve the learning and memory ability of AD mice, inhibit the expression of Keap-1 and Bax, and promote the expression of Nrf2, HO-1 and Bcl-2. We conclude that palmatine can ameliorate oxidative stress and neuroinflammation produced by Aß25-35-induced PC12 cells and mice by modulating the Nrf2/HO-1 pathway. In conclusion, our results suggest that palmatine may have a potential therapeutic effect on AD and could be further investigated as a promising therapeutic agent for AD. It provides a theoretical basis for the development of related drugs.


Alzheimer Disease , Amyloid beta-Peptides , Humans , Rats , Mice , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , PC12 Cells , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Neuroinflammatory Diseases , Oxidative Stress
18.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article En | MEDLINE | ID: mdl-37958950

In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 µg/mL, 60 µg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.


Chlorpyrifos , Panax , Pesticides , Saponins , Mice , Animals , Chlorpyrifos/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Panax/metabolism , Saponins/pharmacology , Organophosphorus Compounds/pharmacology , Pesticides/pharmacology , Oxidative Stress , Glutathione/metabolism , Apoptosis , Plant Leaves/metabolism
19.
Front Microbiol ; 14: 1220670, 2023.
Article En | MEDLINE | ID: mdl-37928654

Gastrodia elata Bl. f. glauca is an important traditional Chinese medicinal plant. The yield and quality of Gastrodia elata Bl. have significantly decreased due to multigenerational asexual reproduction. Therefore, it is necessary to have sexual reproduction of Gastrodia elata Bl. to supplement the market supply. Seeds of G. elata Bl. have no endosperm, and their sexual reproduction depends on the nutrients provided by the embryo cells infected by Mycena fungi to complete seed germination. However, Mycena fungi are small and have many species, and not all Mycena fungi can promote the germination of G. elata Bl. seeds. Therefore, it is of great significance to isolate and identify suitable germination fungi and explore the mechanism for improving the production performance and yield, and quality of G. elata Bl. Six closely related Mycena isolates, JFGL-01, JFGL-02, JFGL-03, JFGL-04, JFGL-05, and JFGL-06, were isolated from the leaves and protocorms of G. elata Bl. f. glauca and were identified as Mycena purpureofusca. The mycelial state and number of germinating protocorms were used as indicators to preferentially select Mycena fungi, and it was concluded that JFGL-06 had the best mycelial state and ability to germinate G. elata Bl. seeds. Finally, a mechanism to increase the yield of G. elata Bl. was explored by comparing the changes in nutrient elements and microbial diversity in the soil around G. elata Bl. with different strains. JFGL-06 proved to be an excellent Mycena fungal strain suitable for G. elata Bl. f. glauca. Compared with the commercial strain, JFGL-06 significantly increased the C, N, Na, Mg, S, Cl, K, Ca, and Fe contents of the soil surrounding the protocorms of G. elata Bl. f. glauca. JFGL-06 improved the composition, diversity, and metabolic function of the surrounding soil microbial community of G. elata Bl. f. glauca protocorms at the phylum, class, and genus levels, significantly increased the relative abundance of bacteria such as Acidobacteria and fungi such as Trichoderma among the dominant groups, and increased the abundance of functional genes in metabolic pathways such as nucleotide metabolism and energy metabolism. There was a significant reduction in the relative abundance of bacteria, such as Actinomycetes, and fungi, such as Fusarium, in the dominant flora, and a reduced abundance of functional genes, such as amino acid metabolism and xenobiotic biodegradation and metabolism. This is the main reason why the JFGL-06 strain promoted high-quality and high-yield G. elata Bl. f. glauca in Changbai Mountain.

20.
Toxics ; 11(9)2023 Sep 07.
Article En | MEDLINE | ID: mdl-37755770

Aflatoxin B1 (AFB1) is a toxic food/feed contaminant and the liver is its main target organ, thus it poses a great danger to organisms. Dihydromyricetin (DHM), a natural flavonoid compound, can be used as a food additive with high safety and has been shown to have strong hepatoprotective effects. In this experiment, PPI network and KEGG pathway analysis were constructed by network pharmacological analysis technique using software and platforms such as Swiss, String, and David and Cytoscape. We screened AFB1 and DHM cross-targets and pathways of action, followed by molecular docking based on the strength of binding affinity of genes to DHM. In addition, we exposed AFB1 (200 µg/kg) to mice to establish a liver injury model. Histological observation, biochemical assay, oxidative stress indicator assay, TUNEL staining and Western blot were used to evaluate the liver injury. Network pharmacological results were screened to obtain 25 cross-targets of action and 20 pathways of action. It was found that DHM may exert anti-hepatic injury effects by inhibiting the overexpression of Caspase-3 protein and increasing the expression of Bcl-2 protein. DHM (200 mg/kg) was found to reduce AFB1-induced liver indices such as alanine aminotransferase (ALT) and aspartate acyltransferase (AST), and attenuate hepatic histopathological damage through animal models. Importantly, DHM inhibited malondialdehyde (MDA) formation in liver tissue and attenuated AFB1-induced oxidative stress injury by increasing glutathione-S-transferase (GST) glutathione (GPX) catalase (CAT) and superoxide dismutase (SOD). Meanwhile, DHM also restored the expression of anti-apoptotic protein Bcl-2 and antioxidant proteins, Nrf2, Keap1 and its downstream HO-1, and down-regulated the expression of pro-apoptotic proteins Bax and Caspase-3 in AFB1-induced liver tissues. The results confirmed that liver injury caused by AFB1 exposure could be alleviated by DHM, providing valuable guidance for in-depth study of DHM in the treatment of liver-related diseases, and laying the foundation for in-depth development and utilization of DHM.

...