Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(10): 110862, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39319271

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood and adolescence. The availability of appropriate and well-characterized preclinical models for RMS is limited, posing a challenge for investigating the molecular mechanisms and evaluating new targeted compounds in preclinical settings. Here, we collected 51 RMS specimens (referred to as ZJUCH-RMS cohort) and established 9 patient-derived cells (PDCs) and validated the identity of these cells by the expression of RMS-specific markers. Whole-transcriptome analysis identified high-confidence mutations in ZJUCH-RMS cohort including RAS, TP53, ARID1A, MYOD1, and MYCN. Further studies showed that RMS PDCs retained the genetic alterations and the expression of RMS hallmark and dependency genes in matched primary tumors and acted as valuable tools to assess drug responses and pharmacogenomic interactions. Our study provides unique PDCs that are available for preclinical studies of RMS and further advances the feasibility of RMS PDCs as valuable tools for developing personalized treatments for patients.

2.
Redox Rep ; 29(1): 2391139, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39138590

RESUMEN

Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R's effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R's activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R's protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Células Epiteliales , Túbulos Renales , Mitocondrias , Nefrolitiasis , Receptores sigma , Receptor Sigma-1 , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Nefrolitiasis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Receptores sigma/metabolismo
3.
Heliyon ; 10(14): e34405, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114033

RESUMEN

Background: Nephrolithiasis, a common and chronic urological condition, exerts significant pressure on both the general public and society as a whole. The precise mechanisms of nephrolith formation remain inadequately comprehended. Nevertheless, the utilization of proteomics methods has not been employed to examine the development of renal calculi in order to efficiently hinder and manage the creation and reappearance of nephrolith. Nowadays, with the rapid development of proteomics techniques, more efficient and more accurate proteomics technique is utilized to uncover the mechanisms underlying diseases. The objective of this study was to investigate the possible alterations of HK-2 cells when exposed to varying amounts of calcium oxalate (CaOx). The aim was to understand the precise development of stone formation and recurrence, in order to find effective preventive and treatment methods. Methods: To provide a complete view of the proteins involved in the development of nephrolithiasis, we utilized an innovative proteomics method called 4D-LFQ proteomic quantitative techniques. HK-2 cells were selected as our experimental subjects. Three groups (n = 3) of HK-2 cells were treated with intervention solutions containing 0 (negative control, NC), 1 mM, and 2 mM CaOx, respectively. For the proteins that showed differential expression, various analyses were conducted including examination of Gene Ontology (GO), Clusters of Orthologous Groups of proteins (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, enrichment analysis of protein domains, and hierarchical clustering analysis. The STRING database was used to identify the interaction network of the chosen proteins. Candidate proteins were validated using parallel reaction monitoring (PRM) in the end. Results: All three groups verified the repeatability of samples. According to the results of 4D-LFQ proteomic quantitative analysis, there were 120, 262, and 81 differentially expressed proteins (DEPs) in the 1 mM-VS-NC, 2 mM-VS-NC, and 2 mM-VS-1mM conditions, respectively. According to GO annotation, the functional enrichment analysis indicates that the differentially expressed proteins (DEPs) were notably enriched in promoting cell migration and the extracellular matrix, among other functions. Analysis of enrichment, based on the KEGG pathway, revealed significant enrichment of DEPs in complement and coagulation cascades, as well as in ECM-receptor (extracellular matrix-receptor) interaction and other related pathways. 14 DEPs of great interest were selected as candidate proteins, including FN1, TFRC, ITGA3, FBN1, HYOU1, SPP1, HSPA5, COL6A1, MANF, HIP1R, JUP, AXL, CTNNB1 and DSG2.The data from PRM demonstrated the variation trend of 14 DEPs was identical as 4D-LFQ proteomic quantitative analysis. Conclusion: Proteomics studies of CaOx-induced HK-2 cells using 4D-LFQ proteomic quantitative analysis and PRM may help to provide crucial potential target proteins and signaling pathways for elucidating the mechanism of nephrolithiasis and better treating nephrolithiasis.

4.
J Ethnopharmacol ; 334: 118502, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950794

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Urolithiasis represents a predominant concern within urology due to its high recurrence rate and consequential surgical complications. Traditional Chinese Medicine (TCM), with a history spanning over 2000 years in treating kidney diseases, not only offers a less invasive and cost-effective option for treating and preventing urolithiasis, but also serves as a pharmacological treasure trove for the development of anti-urolithic drugs. AIM OF THE STUDY: With the continuous deepening of research on the anti-urolithic effects of Chinese medicines, the pharmacological mechanisms of TCMs against urolithiasis are continuously evolving. Therefore, it is essential to summarize the current research status, clinical effectiveness, and mechanisms of TCM in treating and preventing urolithiasis, to ascertain its potential in anti-urolithic treatments, and to provide a reference for future anti-urolithiasis drug research. METHODS: The electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature spanning from 2000 to September 2023, using keywords "Traditional Chinese Medicine" and "Urolithiasis". Then we conducted a visual analysis of the current status of related research, as well as a systematic organization of the therapeutic effects and underlying mechanisms of anti-urolithic TCMs. RESULTS: Through the organization of research models, therapeutic effects, and active ingredients of 31 potential anti-urolithic TCMs, we have systematically summarized the underlying mechanisms of TCMs in management of urolithiasis. Mechanistically, Chinese herbs facilitate stone expulsion by enhancing diuresis, instigating anti-spasmodic effects, and promoting ureteral peristalsis when addressing calculi. They also harbor the potential to dissolve pre-existing stones. In terms of stone recurrence prevention, TCM compounds obstruct stone formation through targeting the sequence of crystal adhesion, nucleation, growth, and aggregation to inhibit stone formation. Additionally, TCM's significant roles include stifling oxidative stress, augmenting urinary stone inhibitors, and harmonizing oxalate metabolism, all of which are critical actions in stone prevention. CONCLUSION: The anti-urolithic mechanism of TCM is multifaceted. Investigating the anti-urolithiasis mechanisms of TCM not only illuminates the potential of Chinese medicine in treating and preventing urolithiasis, but also uncovers active molecules and targets for drug treatment against calculus formation.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Urolitiasis , Urolitiasis/tratamiento farmacológico , Urolitiasis/prevención & control , Medicina Tradicional China/métodos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Animales
5.
J Pharm Anal ; 14(6): 100956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39035219

RESUMEN

Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca2+ mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear. This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones. Genetic approaches were used to control JPT2 expression in cells and mice, and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics. The results showed that oxalate exposure triggered the upregulation of JPT2, which is involved in nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ mobilization. Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown, and these were dominated by phosphatidylinositol 3-kinase (PI3K)/AKT signaling, respectively. Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde (SSA) in macrophages. Furthermore, JPT2 deficiency in mice inhibited kidney stones mineralization. In conclusion, this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion, and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.

6.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714951

RESUMEN

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


Asunto(s)
Sistemas CRISPR-Cas , Oxalato de Calcio , Riñón , Animales , Humanos , Masculino , Ratones , Oxalato de Calcio/metabolismo , Sistemas CRISPR-Cas/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Ferritinas , Ferroptosis/genética , Edición Génica/métodos , Células HEK293 , Riñón/metabolismo , Riñón/patología , Cálculos Renales/genética , Cálculos Renales/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Biosíntesis de Proteínas/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo
7.
Exp Cell Res ; 438(2): 114053, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663476

RESUMEN

Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Movimiento Celular , Proliferación Celular , Factor 2 Relacionado con NF-E2 , Cuassinas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Cuassinas/farmacología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Especies Reactivas de Oxígeno/metabolismo , Progresión de la Enfermedad , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
8.
PLoS One ; 19(4): e0299019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593113

RESUMEN

Multiple myeloma (MM) is the second most prevalent hematologic malignancy which remains uncurable. Numerous drugs have been discovered to inhibit MM cells. Indisulam, an aryl sulfonamide, has a potent anti-myeloma activity in vitro and in vivo. This study aims to explore the new mechanism of indisulam and investigate its potential use in combination with melphalan. We examined DNA damage in MM cells through various methods such as western blotting (WB), immunofluorescence, and comet assay. We also identified the role of topoisomerase IIα (TOP2A) using bioinformatic analyses. The impact of indisulam on the RNA and protein levels of TOP2A was investigated through qPCR and WB. Cell proliferation and apoptosis were assessed using CCK-8 assays, Annexin V/PI assays and WB. We predicted the synergistic effect of the combination treatment based on calculations performed on a website, and further explored the effect of indisulam in combination with melphalan on MM cell lines and xenografts. RNA sequencing data and basic experiments indicated that indisulam caused DNA damage and inhibited TOP2A expression by decreasing transcription and promoting degradation via the proteasome pathway. Functional experiments revealed that silencing TOP2A inhibited cell proliferation and induced apoptosis and DNA damage. Finally, Indisulam/melphalan combination treatment demonstrated a strong synergistic anti-tumor effect compared to single-agent treatments in vitro and in vivo. These findings suggest that combination therapies incorporating indisulam and melphalan have the potential to enhance treatment outcomes for MM.


Asunto(s)
Melfalán , Mieloma Múltiple , Humanos , Melfalán/farmacología , Melfalán/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Línea Celular Tumoral , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
9.
J Cell Mol Med ; 28(7): e18235, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509735

RESUMEN

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Asunto(s)
Calcinosis , Cálculos Renales , Humanos , Médula Renal/metabolismo , Cálculos Renales/complicaciones , Cálculos Renales/metabolismo , Calcinosis/metabolismo , Endoscopía , Inflamación/metabolismo
10.
Adv Sci (Weinh) ; 11(17): e2309234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380498

RESUMEN

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.


Asunto(s)
Sistemas CRISPR-Cas , Oxalato de Calcio , Modelos Animales de Enfermedad , Factor 4G Eucariótico de Iniciación , Ferroptosis , Ferroptosis/genética , Ratones , Animales , Oxalato de Calcio/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Cálculos Renales/genética , Cálculos Renales/metabolismo , Biosíntesis de Proteínas/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
11.
J Gene Med ; 26(1): e3595, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37730959

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a malignancy in which plasma cells proliferate abnormally, and it remains incurable. The cells are characterized by high levels of endoplasmic reticulum stress (ERS) and depend on the ERS response for survival. Thus, we aim to find an ERS-related signature of MM and assess its diagnostic value. METHODS: We downloaded three datasets of MM from the Gene Expression Omnibus database. After identifying ERS-related differentially expressed genes (ERDEGs), we analyzed them using Gene Ontology enrichment analysis. A protein-protein interaction network, a transcription factor-mRNA network, a miRNA-mRNA network and a drug-mRNA network were constructed to explore the ERDEGs. The clinical application of these genes was identified by calculating the infiltration of immune cells and using receiver operating characteistic analyses. Finally, qPCR was performed to further confirm the roles of ERDEGs. RESULTS: We obtained nine ERDEGs of MM. Gene Ontology enrichment indicated that the ERDEGs played a role in the endoplasmic reticulum membrane. Additionally, the protein-protein interaction network showed interaction among the ERDEGs, and there were 20 proteins, 107 transcription factors, 42 drugs or molecular compounds and 51 miRNAs which were likely to interact with the nine genes. In addition, immune cell infiltration analyses showed that there was a strong correlation between the nine genes and immune cells, and these potential biomarkers exhibited good diagnostic values. Finally, the expression of ERDEGs in MM cells was different from that in healthy donor samples. CONCLUSION: The nine ERS-related genes, CR2, DHCR7, DNAJC3, KDELR2, LPL, OSBPL3, PINK1, VCAM1 and XBP1 are potential biomarkers of MM, and this supports further clinical development of the diagnosis and treatment of MM.


Asunto(s)
MicroARNs , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Estrés del Retículo Endoplásmico/genética , Ontología de Genes , MicroARNs/genética , Biomarcadores , ARN Mensajero/genética , Proteínas de Transporte Vesicular
12.
Apoptosis ; 29(1-2): 121-141, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37848672

RESUMEN

Bladder cancer (BLCA) is ranked among the top ten most prevalent cancers worldwide and is the second most common malignant tumor within the field of urology. The limited effectiveness of immune targeted therapy in treating BLCA, due to its high metastasis and recurrence rates, necessitates the identification of new therapeutic targets. Secretogranin II (SCG2), a member of the chromaffin granin/secreted granin family, plays a crucial role in the regulated release of peptides and hormones. The role of SCG2 in the tumor microenvironment (TME) of lung adenocarcinoma and colon cancer has been established, but its functional significance in BLCA remains uncertain. This study aimed to investigate SCG2 expression in 15 bladder cancer tissue samples and their corresponding adjacent control tissues. The potential involvement of SCG2 in BLCA progression was assessed using various techniques, including analysis of public databases, immunohistochemistry, Western Blotting, immunofluorescence, wound-healing assay, Transwell assay, and xenograft tumor formation experiments in nude mice. This study provided novel evidence indicating that SCG2 plays a pivotal role in facilitating the proliferation, migration, and invasion of BLCA by activating the MEK/Erk and MEK/IKK/NF-κB signaling pathways, as well as by promoting M2 macrophage polarization. These findings propose the potential of SCG2 as a molecular target for immunotherapy in human BLCA.


Asunto(s)
FN-kappa B , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Apoptosis , Cromograninas/uso terapéutico , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos , FN-kappa B/genética , FN-kappa B/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Secretogranina II/uso terapéutico , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo
15.
Anim Nutr ; 15: 256-274, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38033608

RESUMEN

Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.

16.
Protein Sci ; 32(12): e4826, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906538

RESUMEN

The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de la Nucleocápside , Humanos , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteína FUS de Unión a ARN/química
17.
Urolithiasis ; 51(1): 118, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796347

RESUMEN

The Holmium (Ho:YAG) laser is presently the most extensively employed in laser lithotripsy for the management of kidney stones. Despite its adoption as the gold standard for laser lithotripsy, Ho:YAG laser lithotripsy poses three significant challenges, namely thermal effect, insufficient stone fragmentation, and stone displacement, which have garnered increased attention from urologic surgeons. Nowadays, the femtosecond laser is regarded as a potential alternative to the Ho:YAG laser due to its capacity to ablate diverse materials with minimal thermal effect. In our ex vivo investigation, we assessed the dimensions of ablation pits, the efficacy of ablation, the degree of stone fragmentation, the alterations in water temperature surrounding stones, and the degree of tissue damage associated with Femtosecond laser lithotripsy utilizing adjustable power settings (1-50 W). Our findings indicate that the ablation pits generated by the Femtosecond laser exhibited uniform geometries, and the effectiveness of ablation and fragmentation for Femtosecond laser lithotripsy were significantly and positively correlated with laser power. When the laser power remained constant, the Femtosecond laser with higher pulse energy demonstrated superior efficiency in stone ablation, but inferior performance in stone fragmentation. Conversely, the Femtosecond laser with higher pulse frequency exhibited the opposite behavior. Furthermore, the thermal effect increased proportionally with laser power, leading to a tentative recommendation of 10W laser power for future investigations. Our in vitro findings suggest that the Femtosecond laser holds promise as a safe and effective alternative to holmium lasers.


Asunto(s)
Cálculos Renales , Láseres de Estado Sólido , Litotripsia por Láser , Litotricia , Humanos , Litotripsia por Láser/efectos adversos , Litotripsia por Láser/métodos , Litotricia/efectos adversos , Cálculos Renales/cirugía , Láseres de Estado Sólido/uso terapéutico , Holmio
18.
Int Immunopharmacol ; 124(Pt A): 110801, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651854

RESUMEN

Hyperoxaluria-induced damage to renal tubular epithelial cells (RTECs) is considered the most significant contributor to kidney stone formation. However, the precise regulatory mechanism underlying this damage, particularly its association with mitophagy dysfunction, remains unclear. Additionally, effective preventive medications for kidney stones are lacking. Melatonin, a hormone secreted by the pituitary gland that primarily regulates circadian rhythm, has been found to modulate mitophagy in recent research. Therefore, this investigation aims to examine the impact of melatonin on mitophagy and cellular impairment in the formation of kidney stone. The results of this study reveal that melatonin can alleviate the formation of kidney stones and reduce oxalate-induced renal injuries. In the RTECs of kidney stone model, mitophagy was found to be impaired, leading to increased oxidative stress, inflammation, and ferroptosis both in vivo and in vitro. Melatonin was shown to have a restorative potential in enhancing PINK1-Parkin-regulated mitophagy through AMPK phosphorylation, reducing excessive ROS release and inhibiting oxidative stress, inflammation and ferroptosis. Further experiments demonstrated that the protective effect of melatonin was diminished by PINK1 knockdown and AMPK pathway blockade. This study is the first to reveal the interplay between mitophagy and ferroptosis in kidney stone models and establish the protective role of melatonin in restoring mitophagy to inhibit ferroptosis.

19.
Adv Sci (Weinh) ; 10(25): e2207549, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401236

RESUMEN

LncRNAs play a critical role in oral squamous cell carcinoma (OSCC) progression. However, the function and detailed molecular mechanism of most lncRNAs in OSCC are not fully understood. Here, a novel nuclear-localized lncRNA, DUXAP9 (DUXAP9), that is highly expressed in OSCC is identified. A high level of DUXAP9 is positively associated with lymph node metastasis, poor pathological differentiation, advanced clinical stage, worse overall survival, and worse disease-specific survival in OSCC patients. Overexpression of DUXAP9 significantly promotes OSCC cell proliferation, migration, invasion, and xenograft tumor growth and metastasis, and upregulates N-cadherin, Vimentin, Ki67, PCNA, and EZH2 expression and downregulates E-cadherin in vitro and in vivo, whereas knockdown of DUXAP9 remarkably suppresses OSCC cell proliferation, migration, invasion, and xenograft tumor growth in vitro and in vivo in an EZH2-dependent manner. Yin Yang 1 (YY1) is found to activate the transcriptional expression of DUXAP9 in OSCC. Furthermore, DUXAP9 physically interacts with EZH2 and inhibits EZH2 degradation via the suppression of EZH2 phosphorylation, thereby blocking EZH2 translocation from the nucleus to the cytoplasm. Thus, DUXAP9 can serve as a promising target for OSCC therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Yin-Yang , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias de la Boca/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Quinasa CDC2
20.
Apoptosis ; 28(7-8): 1154-1167, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37149513

RESUMEN

Breast cancer (BC) has threatened women worldwide for a long time, and novel treatments are needed. Ferroptosis is a new form of regulated cell death that is a potential therapeutic target for BC. In this study, we identified Escin, a traditional Chinese medicine, as a possible supplement for existing chemotherapy strategies. Escin inhibited BC cell growth in vitro and in vivo, and ferroptosis is probable to be the main cause for Escin-induced cell death. Mechanistically, Escin significantly downregulated the protein level of GPX4, while overexpression of GPX4 could reverse the ferroptosis triggered by Escin. Further study revealed that Escin could promote G6PD ubiquitination and degradation, thus inhibiting the expression of GPX4 and contributing to the ferroptosis. Moreover, proteasome inhibitor MG132 or G6PD overexpression could partially reverse Escin-induced ferroptosis, when G6PD knockdown aggravated that. In vivo study also supported that downregulation of G6PD exacerbated tumor growth inhibition by Escin. Finally, our data showed that cell apoptosis was dramatically elevated by Escin combined with cisplatin in BC cells. Taken together, these results suggest that Escin inhibits tumor growth in vivo and in vitro via regulating the ferroptosis mediated by G6PD/GPX4 axis. Our findings provide a promising therapeutic strategy for BC.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Escina , Ferroptosis/genética , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA