Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(14): 13408-13417, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37406158

RESUMEN

Detecting magnetic noise from small quantities of paramagnetic spins is a powerful capability for chemical, biochemical, and medical analysis. Quantum sensors based on optically addressable spin defects in bulk semiconductors are typically employed for such purposes, but the 3D crystal structure of the sensor inhibits sensitivity by limiting the proximity of the defects to the target spins. Here we demonstrate the detection of paramagnetic spins using spin defects hosted in hexagonal boron nitride (hBN), a van der Waals material that can be exfoliated into the 2D regime. We first create negatively charged boron vacancy (VB-) defects in a powder of ultrathin hBN nanoflakes (<10 atomic monolayers thick on average) and measure the longitudinal spin relaxation time (T1) of this system. We then decorate the dry hBN nanopowder with paramagnetic Gd3+ ions and observe a clear T1 quenching under ambient conditions, consistent with the added magnetic noise. Finally, we demonstrate the possibility of performing spin measurements, including T1 relaxometry using solution-suspended hBN nanopowder. Our results highlight the potential and versatility of the hBN quantum sensor for a range of sensing applications and make steps toward the realization of a truly 2D, ultrasensitive quantum sensor.

2.
ACS Nano ; 16(8): 12580-12589, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35866839

RESUMEN

Interest in van der Waals materials often stems from a desire to miniaturize existing technologies by exploiting their intrinsic layered structures to create near-atomically thin components that do not suffer from surface defects. One appealing property is an easily switchable yet robust magnetic order, which is only sparsely demonstrated in the case of in-plane anisotropy. In this work, we use widefield nitrogen-vacancy (NV) center magnetic imaging to measure the properties of individual flakes of CuCrP2S6, a multiferroic van der Waals magnet known to exhibit weak easy-plane anisotropy in the bulk. We chart the crossover between the in-plane ferromagnetism in thin flakes down to the trilayer and the bulk behavior dominated by a low-field spin-flop transition. Further, by exploiting the directional dependence of NV center magnetometry, we are able to observe an instance of a predominantly out-of-plane ferromagetic phase near zero field, in contrast with our expectation and previous experiments on the bulk material. We attribute this to the presence of surface anisotropies caused by the sample preparation process or exposure to the ambient environment, which is expected to have more general implications for a broader class of weakly anisotropic van der Waals magnets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...