Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Drug Metab Rev ; 55(4): 301-342, 2023 11.
Article En | MEDLINE | ID: mdl-37737116

This annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al. 2018, Khojasteh et al. 2019, Khojasteh et al. 2020, Khojasteh et al. 2021, Khojasteh et al. 2022). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation.


Biotransformation , Humans
2.
Drug Metab Rev ; 55(4): 267-300, 2023 11.
Article En | MEDLINE | ID: mdl-37608698

With the 50th year mark since the launch of Drug Metabolism and Disposition journal, the field of drug metabolism and bioactivation has advanced exponentially in the past decades (Guengerich 2023).This has, in a major part, been due to the continued advances across the whole spectrum of applied technologies in hardware, software, machine learning (ML), and artificial intelligence (AI). LC-MS platforms continue to evolve to support key applications in the field, and automation is also improving the accuracy, precision, and throughput of these supporting assays. In addition, sample generation and processing is being aided by increased diversity and quality of reagents and bio-matrices so that what is being analyzed is more relevant and translatable. The application of in silico platforms (applied software, ML, and AI) is also making great strides, and in tandem with the more traditional approaches mentioned previously, is significantly advancing our understanding of bioactivation pathways and how these play a role in toxicity. All of this continues to allow the area of bioactivation to evolve in parallel with associated fields to help bring novel or improved medicines to patients with urgent or unmet needs.Shuai Wang and Cyrus Khojasteh, on behalf of the authors.


Artificial Intelligence , Machine Learning , Humans , Mass Spectrometry
3.
Drug Metab Rev ; 54(3): 207-245, 2022 08.
Article En | MEDLINE | ID: mdl-35815654

Biotransformation field is constantly evolving with new molecular structures and discoveries of metabolic pathways that impact efficacy and safety. Recent review by Kramlinger et al. (2022) nicely captures the future (and the past) of highly impactful science of biotransformation (see the first article). Based on the selected articles, this review was categorized into three sections: (1) new modalities biotransformation, (2) drug discovery biotransformation, and (3) drug development biotransformation (Table 1).


Drug Discovery , Biotransformation , Humans , Inactivation, Metabolic
4.
Drug Metab Rev ; 54(3): 246-281, 2022 08.
Article En | MEDLINE | ID: mdl-35876116

This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (see references). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.[Table: see text].


Microsomes, Liver , Biotransformation , Humans , Microsomes, Liver/metabolism
5.
AIDS ; 36(1): 75-82, 2022 01 01.
Article En | MEDLINE | ID: mdl-34586085

OBJECTIVE: The aim of this study was to examine whether administering both vorinostat and disulfiram to people with HIV (PWH) on antiretroviral therapy (ART) is well tolerated and can enhance HIV latency reversal. DESIGN: Vorinostat and disulfiram can increase HIV transcription in PWH on ART. Together, these agents may lead to significant HIV latency reversal. METHODS: Virologically suppressed PWH on ART received disulfiram 2000 mg daily for 28 days and vorinostat 400 mg daily on days 8-10 and 22-24. The primary endpoint was plasma HIV RNA on day 11 relative to baseline using a single copy assay. Assessments included cell-associated unspliced RNA as a marker of latency reversal, HIV DNA in CD4+ T-cells, plasma HIV RNA, and plasma concentrations of ART, vorinostat, and disulfiram. RESULTS: The first two participants (P1 and P2) experienced grade 3 neurotoxicity leading to trial suspension. After 24 days, P1 presented with confusion, lethargy, and ataxia having stopped disulfiram and ART. Symptoms resolved by day 29. After 11 days, P2 presented with paranoia, emotional lability, lethargy, ataxia, and study drugs were ceased. Symptoms resolved by day 23. CA-US RNA increased by 1.4-fold and 1.3-fold for P1 and P2 respectively. Plasma HIV RNA was detectable from day 8 to 37 (peak 81 copies ml-1) for P2 but was not increased in P1 Antiretroviral levels were therapeutic and neuronal injury markers were elevated in P1. CONCLUSION: The combination of prolonged high-dose disulfiram and vorinostat was not safe in PWH on ART and should not be pursued despite evidence of latency reversal.


HIV Infections , Disulfiram/administration & dosage , Drug Therapy, Combination/adverse effects , HIV Infections/drug therapy , Humans , Virus Latency/physiology , Vorinostat/administration & dosage
6.
Drug Metab Dispos ; 50(3): 258-267, 2022 03.
Article En | MEDLINE | ID: mdl-34921097

Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them toward a rewarding career path. The ability of scientists with a background in biotransformation and organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small and large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders, and antibodies. SIGNIFICANCE STATEMENT: Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity of nurturing creative ways to train them and guarantee the future growth of this field.


Drug Industry , Xenobiotics , Biotransformation , Drug Discovery , Humans , Pharmaceutical Preparations
7.
Drug Metab Rev ; 53(3): 384-433, 2021 08.
Article En | MEDLINE | ID: mdl-33910427

This annual review is the sixth of its kind since 2016 (see references). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation and bioactivation. These fields are constantly evolving with new molecular structures and discoveries of corresponding pathways for metabolism that impact relevant drug development with respect to efficacy and safety. Based on the selected articles, we created three sections: (1) drug design, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation and safety (Table 1). Unlike in years past, more biotransformation experts have joined and contributed to this effort while striving to maintain a balance of authors from academic and industry settings.[Table: see text].


Biotransformation , Humans
8.
ACS Pharmacol Transl Sci ; 3(4): 655-665, 2020 Aug 14.
Article En | MEDLINE | ID: mdl-32832868

Emtricitabine (FTC), tenofovir (TFV), efavirenz (EFV), and rilpivirine (RPV) are currently used as components of HIV combination therapy. Although these drugs are widely used in antiretroviral therapy, several organ toxicities related to TFV and EFV have been observed clinically. TFV is associated with nephrotoxicity, whereas EFV-related hepatotoxicity and neurotoxicity have been reported. While the precise molecular mechanisms related to the above-mentioned clinically observed toxicities have yet to be elucidated, understanding the local tissue distribution profiles of these drugs could yield insights into their safety profiles. To date, the distributions of these drugs in tissue following in vivo exposure are poorly understood. Therefore, in this study, we employed a matrix-assisted laser desorption/ionization mass spectrometry imaging method to generate spatial distribution profiles of FTC, TFV, EFV, and RPV in mouse tissues following in vivo dosing of following drug regimens: TFV-FTC-EFV and TFV-FTC-RPV. For this study, liver, brain, kidney, spleen, and heart tissues were obtained from mice (n = 3) following separate oral administration of the above-mentioned drug regimens. Interestingly, EFV was detected in liver, brain, and heart following TFV-FTC-EFV treatment. Additionally, hydroxylated EFV, which encompasses the cytochrome P450-dependent monooxygenated metabolites of EFV, was detected in liver, brain, spleen, and heart tissue sections. Notably, the tissue distribution profiles of RPV and hydroxylated RPV following in vivo dosing of TFV-FTC-RPV were different from EFV/hydroxylated EFV despite RPV belonging to the same drug class as EFV. In conclusion, the observed spatial distribution profiles of the study drugs are in agreement with their safety profiles in humans.

9.
J Med Chem ; 63(12): 6561-6574, 2020 06 25.
Article En | MEDLINE | ID: mdl-32065749

Cytochrome P450-dependent metabolism of the anti-HIV drug nevirapine (NVP) to 12-hydroxy-NVP (12-OHNVP) has been implicated in NVP toxicities. We investigated the impact of twelfth-position trideuteration (12-D3NVP) on the hepatic metabolism of and response to NVP. Formation of 12-OHNVP decreased in human (10.6-fold) and mouse (4.6-fold) hepatocytes incubated with 10 µM 12-D3NVP vs NVP. An observed kinetic isotope effect of 10.1 was measured in human liver microsomes. During mouse hepatocyte treatment (400 µM) with NVP or 12-D3NVP, cell death was reduced 30% with 12-D3NVP vs NVP, while glucuronidated and glutathione-conjugated metabolites increased with 12-D3NVP vs NVP. Using mass spectrometry proteomics, changes in hepatocyte protein expression, including an increase in stress marker insulin-like growth factor-binding protein 1 (IGFBP-1), were observed with 12-D3NVP vs NVP. These results demonstrate that while deuteration can reduce P450 metabolite formation, impacts on phase II metabolism and hepatocyte protein expression should be considered when employing deuteration to reduce P450 metabolite-related hepatotoxicity.


Cytochrome P-450 CYP3A Inducers/pharmacology , Deuterium/chemistry , Hepatocytes/drug effects , Inactivation, Metabolic , Microsomes, Liver/drug effects , Nevirapine/pharmacology , Animals , Cell Death , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Microsomes, Liver/pathology
10.
Mol Pharmacol ; 95(2): 183-195, 2019 02.
Article En | MEDLINE | ID: mdl-30442673

Efavirenz (EFV), a widely used antiretroviral drug, is associated with idiosyncratic hepatotoxicity and dyslipidemia. Here we demonstrate that EFV stimulates the activation in primary hepatocytes of key cell stress regulators: inositol-requiring 1α (IRE1α) and X-box binding protein 1 (XBP1). Following EFV exposure, XBP1 splicing (indicating activation) was increased 35.7-fold in primary human hepatocytes. In parallel, XBP1 splicing and IRE1α phosphorylation (p-IRE1α, active IRE1α) were elevated 36.4-fold and 4.9-fold, respectively, in primary mouse hepatocytes. Of note, with EFV treatment, 47.2% of mouse hepatocytes were apoptotic; which was decreased to 23.9% in the presence of STF 083010, an inhibitor of XBP1 splicing. Experiments performed using pregnane X receptor (PXR)-null mouse hepatocytes revealed that EFV-mediated XBP1 splicing and hepatocyte death were not dependent on PXR, which is a nuclear receptor transcription factor that plays a crucial role in the cellular response to xenobiotics. Interestingly, incubation with the primary metabolite of EFV, 8-hydroxyefavirenz (8-OHEFV), only resulted in 10.3- and 2.9-fold increased XBP1 splicing in human and mouse hepatocytes and no change in levels of p-IRE1α in mouse hepatocytes. To further probe the structure-activity relationship of IRE1α-XBP1 activation by EFV, 16 EFV analogs were employed. Of these, an analog in which the EFV alkyne is replaced with an alkene and an analog in which the oxazinone oxygen is replaced by a carbon stimulated XBP1 splicing in human, mouse, and macaque hepatocytes. These data demonstrate that EFV and compounds sharing the EFV scaffold can activate IRE1α-XBP1 across human, mouse, and macaque species.


Benzoxazines/pharmacology , Endoribonucleases/metabolism , Hepatocytes/drug effects , X-Box Binding Protein 1/metabolism , Alkynes , Animals , Cells, Cultured , Cyclopropanes , Female , Hepatocytes/metabolism , Humans , Liver , Macaca , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , RNA Splicing/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism
11.
ChemMedChem ; 13(7): 736-747, 2018 04 06.
Article En | MEDLINE | ID: mdl-29430850

Efavirenz (EFV), an antiretroviral that interacts clinically with co-administered drugs via activation of the pregnane X receptor (PXR), is extensively metabolized by the cytochromes P450. We tested whether its primary metabolite, 8-hydroxyEFV (8-OHEFV) can activate PXR and potentially contribute to PXR-mediated drug-drug interactions attributed to EFV. Luciferase reporter assays revealed that despite only differing from EFV by an oxygen atom, 8-OHEFV does not activate PXR. Corroborating this, treatment with EFV for 72 h elevated the mRNA abundance of the PXR target gene, Cyp3a11, by approximately 28-fold in primary hepatocytes isolated from PXR-humanized mice, whereas treatment with 8-OHEFV did not result in a change in Cyp3A11 mRNA levels. FRET-based competitive binding assays and isothermal calorimetry demonstrated that even with the lack of ability to activate PXR, 8-OHEFV displays an affinity for PXR (IC50 12.1 µm; KD 7.9 µm) nearly identical to that of EFV (IC50 18.7 µm; KD 12.5 µm). The use of 16 EFV analogues suggest that other discreet changes to the EFV structure beyond the 8-position are well tolerated. Molecular docking simulations implicate an 8-OHEFV binding mode that may underlie its divergence in PXR activation from EFV.


Benzoxazines/metabolism , Pregnane X Receptor/metabolism , Alkynes , Animals , Benzoxazines/chemistry , Benzoxazines/pharmacology , Binding Sites , Cyclopropanes , Hepatocytes/drug effects , Humans , Ligands , Mice , Molecular Docking Simulation , Molecular Structure , Pregnane X Receptor/agonists , Pregnane X Receptor/chemistry , Protein Binding , Structure-Activity Relationship
...