Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Arch Pharm (Weinheim) ; 355(6): e2200033, 2022 Jun.
Article En | MEDLINE | ID: mdl-35315115

A novel series of triazole-linked isatin-indole-3-carboxaldehyde hybrids based on the febuxostat skeleton and its binding site interactions were rationally designed and synthesized as potential xanthine oxidase inhibitors. Among the synthesized hybrids, A19 showed the most potent xanthine oxidase inhibition (IC50 = 0.37 µM) with the mixed-type inhibitory scenario. Structure-activity relationship studies revealed that methoxy (OCH3 ) substitution on position 5 of the isatin nucleus and a two-carbon distance between isatin and the triazole moiety is most tolerable for the inhibitory potential. Various binding interactions of A19 with the binding site of xanthine oxidase are also streamlined by molecular docking studies, which showcase the favorable binding pattern for xanthine oxidase inhibition by the hybrid. Furthermore, molecular dynamic studies were performed that suggest the stability of the enzyme-hybrid complex. Overall, the study suggests that hybrid A19 can act as an effective hit lead for further development of potent xanthine oxidase inhibitors.


Isatin , Xanthine Oxidase , Enzyme Inhibitors/chemistry , Indoles , Isatin/chemistry , Isatin/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Triazoles/pharmacology
2.
Mol Divers ; 25(1): 603-624, 2021 Feb.
Article En | MEDLINE | ID: mdl-32886304

Breast cancer is the most prominent, frequently diagnosed and leading cause of death among women. Estrogen is an agonist of estrogen receptor alpha (ER-α), expressed in mammary glands and is responsible for initiating many signalling pathways that lead to differentiation and development of breast tissue. Any mutations in these signalling pathways result in irregular growth of mammary tissue, leading to the development of tumour or cancer. All these observations attract the attention of researchers to antagonize ER-α receptor either by developing selective estrogen receptor modulators or by selective estrogen receptor degraders. Therefore, this article provides a brief overview of various factors that are responsible for provoking breast cancer in women and design strategies recently used by the various research groups across the world for antagonizing or demodulating ER-α.


Breast Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Molecular Targeted Therapy , Estrogen Receptor alpha/antagonists & inhibitors , Female , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Humans , Models, Molecular
...