Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(13): 10567-10588, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917049

RESUMEN

G protein-coupled receptor G2A was postulated to be a promising target for the development of new therapeutics in neuropathic pain, acute myeloid leukemia, and inflammation. However, there is still a lack of potent, selective, and drug-like G2A agonists to be used as a chemical tool or as the starting matter for the development of drugs. In this work, we present the discovery and structure-activity relationship elucidation of a new potent and selective G2A agonist scaffold. Systematic optimization resulted in (3-(pyridin-3-ylmethoxy)benzoyl)-d-phenylalanine (T-10418) exhibiting higher potency than the reference and natural ligand 9-HODE and high selectivity among G protein-coupled receptors. With its favorable activity, a clean selectivity profile, excellent solubility, and high metabolic stability, T-10418 qualifies as a pharmacological tool to investigate the effects of G2A activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Humanos , Relación Estructura-Actividad , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Fenilalanina/farmacología , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/síntesis química , Estructura Molecular
2.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350720

RESUMEN

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Asunto(s)
Canales de Potasio , Prurito , Animales , Ratones , Antipruriginosos/uso terapéutico , Histamina/metabolismo , Loxapina/uso terapéutico , Canales de Potasio/metabolismo , Prurito/tratamiento farmacológico , Prurito/metabolismo
3.
J Am Chem Soc ; 145(27): 14802-14810, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37385602

RESUMEN

The lipid-sensing transcription factor PPARγ is the target of antidiabetic thiazolidinediones (TZD). At two sites within its ligand binding domain, it also binds oxidized vitamin E metabolites and the vitamin E mimetic garcinoic acid. While the canonical interaction within the TZD binding site mediates classical PPARγ activation, the effects of the second binding on PPARγ activity remain elusive. Here, we identified an agonist mimicking dual binding of vitamin E metabolites and developed a selective ligand of the second site, unveiling potential noncanonical regulation of PPARγ activities. We found that this alternative binding event can simultaneously occur with orthosteric ligands and it exerted different effects on PPARγ-cofactor interactions compared to both orthosteric PPARγ agonists and antagonists, indicating the diverse roles of the two binding sites. Alternative site binding lacked the pro-adipogenic effect of TZD and mediated no classical PPAR signaling in differential gene expression analysis but markedly diminished FOXO signaling, suggesting potential therapeutic applications.


Asunto(s)
PPAR gamma , Tiazolidinedionas , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Tiazolidinedionas/química , Sitios de Unión
4.
ACS Chem Biol ; 17(11): 3159-3168, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36318238

RESUMEN

The bile-acid sensing nuclear farnesoid X receptor (FXR) is an attractive target for the treatment of hepatic and metabolic diseases, but application of this chemotherapeutic concept remains limited due to adverse effects of FXR activation observed in clinical trials. To elucidate the mechanistic basis of FXR activation at the molecular level, we have systematically studied FXR co-regulator interactions and dimerization in response to seven chemically diverse FXR ligands. Different molecular effects on FXR activation mediated by different scaffolds were evident and aligned with characteristic structural changes within the ligand binding domain of FXR. A partial FXR agonist acted mainly through co-repressor displacement from FXR and caused an FXR-regulated gene expression pattern markedly differing from FXR agonist effects. These results suggest selective modulation of FXR dimerization and co-regulator interactions for different ligands, offering a potential avenue for the design of gene- or tissue-selective FXR modulators.


Asunto(s)
Ácidos y Sales Biliares , Receptores Citoplasmáticos y Nucleares , Ligandos , Dominios Proteicos , Núcleo Celular
5.
Bioorg Chem ; 129: 106164, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162288

RESUMEN

The transcription factor nerve growth factor-induced clone B (NGFI-B, Nur77, NR4A1) is an orphan nuclear receptor playing a role in cell survival and apoptosis regulation. Pharmacological Nur77 modulation holds promise for cancer and (neuro-)inflammatory disease treatment. The available Nur77 ligand scaffolds based on highly lipophilic natural products cytosporone B, celastrol and isoalantolactone are inadequate for the development of potent Nur77 modulators with favorable properties as chemical tools and future drugs. By fragment library screening and subsequent modeling for fragment extension, we have obtained a set of new Nur77 ligands offering alternative chemotypes for the development of Nur77 agonists and inverse agonists. Computer-aided fragment extension in a second stage screening yielded a Nur77 agonist with significant activation efficacy and preference over the related NR4A receptors.


Asunto(s)
Neoplasias , Receptores de Esteroides , Humanos , Ligandos , Receptores Nucleares Huérfanos/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Apoptosis , Neoplasias/tratamiento farmacológico
6.
Biochem Pharmacol ; 204: 115191, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35907497

RESUMEN

Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site of proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and provides a valuable extension to available screening collections.


Asunto(s)
Epóxido Hidrolasas , Ácidos Grasos , Epóxido Hidrolasas/metabolismo , Proteínas de Unión a Ácidos Grasos , Ácidos Grasos/metabolismo , PPAR gamma/metabolismo , Receptores de Leucotrieno B4/metabolismo , Receptor alfa X Retinoide/metabolismo
7.
ChemMedChem ; 17(16): e202200259, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704774

RESUMEN

The neuron derived orphan receptor (NOR-1, NR4A3) is among the least studied nuclear receptors. Its physiological role and therapeutic potential remain widely elusive which is in part due to the lack of chemical tools that can directly modulate NOR-1 activity. To probe the possibility of pharmacological NOR-1 modulation, we have tested a drug fragment library for NOR-1 activation and repression. Despite low hit-rate (<1 %), we have obtained three NOR-1 ligand chemotypes one of which could be rapidly expanded to an analogue comprising low micromolar inverse NOR-1 agonist potency and altering NOR-1 regulated gene expression in a cellular setting. It confirms druggability of the transcription factor and may serve as an early tool to assess the role and potential of NOR-1.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Regulación de la Expresión Génica , Ligandos , Neuronas
8.
Adv Sci (Weinh) ; 9(18): e2104640, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35488520

RESUMEN

The ligand-sensing transcription factor Nurr1 emerges as a promising therapeutic target for neurodegenerative pathologies but Nurr1 ligands for functional studies and therapeutic validation are lacking. Here pronounced Nurr1 modulation by statins for which clinically relevant neuroprotective effects are demonstrated, is reported. Several statins directly affect Nurr1 activity in cellular and cell-free settings with low micromolar to sub-micromolar potencies. Simvastatin as example exhibits anti-inflammatory effects in astrocytes, which are abrogated by Nurr1 knockdown. Differential gene expression analysis in native and Nurr1-silenced cells reveals strong proinflammatory effects of Nurr1 knockdown while simvastatin treatment induces several neuroprotective mechanisms via Nurr1 involving changes in inflammatory, metabolic and cell cycle gene expression. Further in vitro evaluation confirms reduced inflammatory response, improved glucose metabolism, and cell cycle inhibition of simvastatin-treated neuronal cells. These findings suggest Nurr1 involvement in the well-documented but mechanistically elusive neuroprotection by statins.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Fármacos Neuroprotectores , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Simvastatina/farmacología
9.
ChemMedChem ; 17(8): e202200026, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35132775

RESUMEN

Several lines of evidence suggest the ligand-sensing transcription factor Nurr1 as a promising target to treat neurodegenerative diseases. Nurr1 modulators to validate and exploit this therapeutic potential are rare, however. To identify novel Nurr1 agonist chemotypes, we have employed the Nurr1 activator amodiaquine as template for microscale analogue library synthesis. The first set of analogues was based on the 7-chloroquiolin-4-amine core fragment of amodiaquine and revealed superior N-substituents compared to diethylaminomethylphenol contained in the template. A second library of analogues was subsequently prepared to replace the chloroquinolineamine scaffold. The two sets of analogues enabled a full scaffold hop from amodiaquine to a novel Nurr1 agonist sharing no structural features with the lead but comprising superior potency on Nurr1. Additionally, pharmacophore modeling based on the entire set of active and inactive analogues suggested key features for Nurr1 agonists.


Asunto(s)
Amodiaquina , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Amodiaquina/farmacología , Ligandos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química
10.
J Med Chem ; 65(3): 2288-2296, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34989568

RESUMEN

As a master regulator of neurogenesis, the orphan nuclear receptor tailless homologue (TLX, NR2E1) maintains neuronal stem cell homeostasis by acting as a transcriptional repressor of tumor suppressor genes. It is hence considered as an appealing target for the treatment of neurodegenerative diseases, but a lack of potent TLX modulators as tools to probe pharmacological TLX control hinders further validation of its promising potential. Here, we report the development of a potent TLX agonist based on fragment screening, pharmacophore modeling, and fragment fusion. Pharmacophore similarity of a fragment screening hit and the TLX ligand ccrp2 provided a rational basis for fragment linkage, which resulted in several TLX activator scaffolds. Among them, the fused compound 10 evolved as a valuable TLX agonist tool with submicromolar potency and high selectivity over related nuclear receptors, rendering it suitable for functional studies on TLX.


Asunto(s)
Diseño de Fármacos , Receptores Nucleares Huérfanos/agonistas , Animales , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Células HEK293 , Humanos , Ligandos , Microsomas Hepáticos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Piperazina/química , Piperazina/metabolismo , Piperazina/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
11.
J Med Chem ; 65(3): 2023-2034, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34995452

RESUMEN

The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor activated by 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), which has been proposed as a promising therapeutic target for diabetic wound healing and gastrointestinal lesions. In this study, the rational design of a fluorescent probe based on the synthetic BLT2 agonist CAY10583 is described. The synthesis of several derivatives of CAY10583 coupled to fluorescein resulted in a traceable ligand suitable for different fluorescence-based techniques. An HTRF-based displacement assay (Tag-lite) on stably transfected CHO-K1 cells was developed to characterize binding properties of diverse BLT2 ligands. Highly specific binding to the BLT2 receptor was demonstrated in staining experiments on mouse skin tissue, and specific modulation of BLT2-induced cAMP signaling provided further evidence for receptor binding and ligand functionality. In conclusion, the fluorescent ligands developed in this study are suitable to investigate the pharmacology of BLT2 receptor ligands in a variety of assay systems.


Asunto(s)
Colorantes Fluorescentes/química , Ligandos , Receptores de Leucotrieno B4/metabolismo , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Diseño de Fármacos , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Humanos , Cinética , Ratones , Microscopía Fluorescente , Unión Proteica , Receptores de Leucotrieno B4/agonistas , Receptores de Leucotrieno B4/antagonistas & inhibidores , Piel/metabolismo , Piel/patología
12.
ACS Pharmacol Transl Sci ; 4(6): 1794-1807, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34927011

RESUMEN

The orphan nuclear receptor tailless homologue (TLX) is expressed almost exclusively in neural stem cells acting as an essential factor for their survival and is hence considered as a promising drug target in neurodegeneration. However, few studies have characterized the roles of TLX due to the lack of ligands and limited functional understanding. Here, we identify xanthines including caffeine and istradefylline as TLX modulators that counteract the receptor's intrinsic repressor activity. Mutagenesis of residues lining a cavity within the TLX ligand binding domain altered the activity of these ligands, suggesting direct interactions with helix 5. Using xanthines as tool compounds, we observed a ligand-sensitive recruitment of the co-repressor silencing mediator for retinoid or thyroid-hormone receptors, TLX homodimerization, and heterodimerization with the retinoid X receptor. These protein-protein interactions evolve as factors that modulate the TLX function and suggest an unprecedented role of TLX in directly repressing other nuclear receptors.

13.
iScience ; 24(12): 103524, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934933

RESUMEN

Dimerization of Taspase1 activates an intrinsic serine protease function that leads to the catalytic Thr234 residue, which allows to catalyze the consensus sequence Q-3X-2D-1⋅G1X2D3D4, present in Trithorax family members and TFIIA. Noteworthy, Taspase1 performs only a single hydrolytic step on substrate proteins, which makes it impossible to screen for inhibitors in a classical screening approach. Here, we report the development of an HTRF reporter assay that allowed the identification of an inhibitor, Closantel sodium, that inhibits Taspase1 in a noncovalent fashion (IC50 = 1.6 µM). The novel inhibitor interferes with the dimerization step and/or the intrinsic serine protease function of the proenzyme. Of interest, Taspase1 is required to activate the oncogenic functions of the leukemogenic AF4-MLL fusion protein and was shown in several studies to be overexpressed in many solid tumors. Therefore, the inhibitor may be useful for further validation of Taspase1 as a target for cancer therapy.

14.
J Med Chem ; 64(23): 17259-17276, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34818007

RESUMEN

Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor γ (PPARγ) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARγ agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARγ leads to fluid retention associated with edema and weight gain, while partial PPARγ agonists do not have these drawbacks. In this study, we designed a dual partial PPARγ agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , PPAR gamma/agonistas , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Polifarmacia , Ratas , Relación Estructura-Actividad
15.
J Med Chem ; 64(20): 15126-15140, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34633810

RESUMEN

The ligand-sensing transcription factor nuclear receptor related 1 (Nurr1) evolves as an appealing target to treat neurodegenerative diseases. Despite its therapeutic potential observed in various rodent models, potent modulators for Nurr1 are lacking as pharmacological tools. Here, we report the structure-activity relationship and systematic optimization of indole-based inverse Nurr1 agonists. Optimized analogues decreased the receptor's intrinsic transcriptional activity by up to more than 90% and revealed preference for inhibiting Nurr1 monomer activity. In orthogonal cell-free settings, we detected displacement of NCoRs and disruption of the Nurr1 homodimer as molecular modes of action. The inverse Nurr1 agonists reduced the expression of Nurr1-regulated genes in T98G cells, and treatment with an inverse Nurr1 agonist mimicked the effect of Nurr1 silencing on interleukin-6 release from LPS-stimulated human astrocytes. The indole-based inverse Nurr1 agonists valuably extend the toolbox of Nurr1 modulators to further probe the role of Nurr1 in neuroinflammation, cancer, and beyond.


Asunto(s)
Desarrollo de Medicamentos , Indoles/farmacología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Relación Estructura-Actividad
16.
ACS Med Chem Lett ; 12(8): 1261-1266, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34413955

RESUMEN

Leuktriene B4 receptor 2 (BLT2) is a G-protein coupled receptor modulation of which is discussed to be a therapeutic option for healing of intestinal lesions. In this work, new BLT2 agonists were identified by a virtual screening of a repurposing library and in vitro assay of the most promising compounds. Irbesartan, an approved type-1 angiotensin II receptor (AT1) antagonist, was identified as a moderate BLT2 agonist. An initial SAR study on the irbesartan scaffold was performed resulting in the discovery of a new potent BLT2 agonist (8f, EC50 = 67.6 nM). Irbesartan and 8f were shown to promote proliferation of epithelial colon cells, an effect which was reversible by a BLT2 antagonist.

17.
J Biol Chem ; 297(1): 100814, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34081964

RESUMEN

Nuclear receptors (NRs) activate transcription of target genes in response to binding of ligands to their ligand-binding domains (LBDs). Typically, in vitro assays use either gene expression or the recruitment of coactivators to the isolated LBD of the NR of interest to measure NR activation. However, this approach ignores that NRs function as homo- as well as heterodimers and that the LBD harbors the main dimerization interface. Cofactor recruitment is thereby interconnected with oligomerization status as well as ligand occupation of the partnering LBD through allosteric cross talk. Here we present a modular set of homogeneous time-resolved FRET-based assays through which we investigated the activation of PPARγ in response to ligands and the formation of heterodimers with its obligatory partner RXRα. We introduced mutations into the RXRα LBD that prevent coactivator binding but do not interfere with LBD dimerization or ligand binding. This enabled us to specifically detect PPARγ coactivator recruitment to PPARγ:RXRα heterodimers. We found that the RXRα agonist SR11237 destabilized the RXRα homodimer but promoted formation of the PPARγ:RXRα heterodimer, while being inactive on PPARγ itself. Of interest, incorporation of PPARγ into the heterodimer resulted in a substantial gain in affinity for coactivator CBP-1, even in the absence of ligands. Consequently, SR11237 indirectly promoted coactivator binding to PPARγ by shifting the oligomerization preference of RXRα toward PPARγ:RXRα heterodimer formation. These results emphasize that investigation of ligand-dependent NR activation should take NR dimerization into account. We envision these assays as the necessary assay tool kit for investigating NRs that partner with RXRα.


Asunto(s)
Proteína de Unión a CREB/metabolismo , PPAR gamma/metabolismo , Multimerización de Proteína , Receptor alfa X Retinoide/metabolismo , Benzoatos/farmacología , Células HEK293 , Humanos , Ligandos , Mutación/genética , Coactivador 1 de Receptor Nuclear/metabolismo , PPAR gamma/agonistas , PPAR gamma/química , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Reproducibilidad de los Resultados , Receptor alfa X Retinoide/química , Receptor alfa X Retinoide/genética , Retinoides/farmacología , Rosiglitazona/farmacología , Activación Transcripcional/genética
18.
J Med Chem ; 64(12): 8727-8738, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34115934

RESUMEN

The ligand-sensing transcription factor tailless homologue (TLX, NR2E1) is an essential regulator of neuronal stem cell homeostasis with appealing therapeutic potential in neurodegenerative diseases and central nervous system tumors. However, knowledge on TLX ligands is scarce, providing an obstacle to target validation and medicinal chemistry. To discover TLX ligands, we have profiled a drug fragment collection for TLX modulation and identified several structurally diverse agonists and inverse agonists of the nuclear receptor. Propranolol evolved as the strongest TLX agonist and promoted TLX-regulated gene expression in human glioblastoma cells. Structure-activity relationship elucidation of propranolol as a TLX ligand yielded a structurally related negative control compound. In functional cellular experiments, we observed an ability of propranolol to counteract glioblastoma cell proliferation and migration, while the negative control had no effect. Our results provide a collection of TLX modulators as initial chemical tools and set of lead compounds and support therapeutic potential of TLX modulation in glioblastoma.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Propranolol/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Línea Celular Tumoral , Células HEK293 , Humanos , Estructura Molecular , Receptores Nucleares Huérfanos , Relación Estructura-Actividad
19.
Cell Chem Biol ; 28(10): 1489-1500.e8, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33989565

RESUMEN

Vitamin E exhibits pharmacological effects beyond established antioxidant activity suggesting involvement of unidentified mechanisms. Here, we characterize endogenously formed tocopherol carboxylates and the vitamin E mimetic garcinoic acid (GA) as activators of the peroxisome proliferator-activated receptor gamma (PPARγ). Co-stimulation of PPARγ with GA and the orthosteric agonist pioglitazone resulted in additive transcriptional activity. In line with this, the PPARγ-GA complex adopted a fully active conformation and interestingly contained two bound GA molecules with one at an allosteric site. A co-regulator interaction scan demonstrated an unanticipated co-factor recruitment profile for GA-bound PPARγ compared with canonical PPARγ agonists and gene expression analysis revealed different effects of GA and pioglitazone on PPAR signaling in hepatocytes. These observations reveal allosteric mechanisms of PPARγ modulation as an alternative avenue to PPARγ targeting and suggest contributions of PPARγ activation by α-13-tocopherolcarboxylate to the pharmacological effects of vitamin E.


Asunto(s)
PPAR gamma/metabolismo , Vitamina E/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Benzopiranos/química , Benzopiranos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Células Hep G2 , Humanos , Ligandos , Simulación de Dinámica Molecular , PPAR gamma/agonistas , Pioglitazona/química , Pioglitazona/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Vitamina E/química , Vitamina E/farmacología
20.
J Med Chem ; 64(7): 3720-3746, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33769048

RESUMEN

Autophagy is the common name for a number of lysosome-based degradation pathways of cytosolic cargos. The key components of autophagy are members of Atg8 family proteins involved in almost all steps of the process, from autophagosome formation to their selective fusion with lysosomes. In this study, we show that the homologous members of the human Atg8 family proteins, LC3A and LC3B, are druggable by a small molecule inhibitor novobiocin. Structure-activity relationship (SAR) studies of the 4-hydroxy coumarin core scaffold were performed, supported by a crystal structure of the LC3A dihydronovobiocin complex. The study reports the first nonpeptide inhibitors for these protein interaction targets and will lay the foundation for the development of more potent chemical probes for the Atg8 protein family which may also find applications for the development of autophagy-mediated degraders (AUTACs).


Asunto(s)
4-Hidroxicumarinas/farmacología , Autofagia/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , 4-Hidroxicumarinas/síntesis química , 4-Hidroxicumarinas/metabolismo , Células HEK293 , Humanos , Ligandos , Estructura Molecular , Novobiocina/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...