Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 16: 841312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360289

RESUMEN

Establishing the basic knowledge, methodology, and technology for a framework for the continuous decoding of hand/arm movement intention was the aim of the ERC-funded project "Feel Your Reach". In this work, we review the studies and methods we performed and implemented in the last 6 years, which build the basis for enabling severely paralyzed people to non-invasively control a robotic arm in real-time from electroencephalogram (EEG). In detail, we investigated goal-directed movement detection, decoding of executed and attempted movement trajectories, grasping correlates, error processing, and kinesthetic feedback. Although we have tested some of our approaches already with the target populations, we still need to transfer the "Feel Your Reach" framework to people with cervical spinal cord injury and evaluate the decoders' performance while participants attempt to perform upper-limb movements. While on the one hand, we made major progress towards this ambitious goal, we also critically discuss current limitations.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5909-5913, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892464

RESUMEN

Riemannian tangent space methods offer state-of-the-art performance in magnetoencephalography (MEG) and electroencephalography (EEG) based applications such as brain-computer interfaces and biomarker development. One limitation, particularly relevant for biomarker development, is limited model interpretability compared to established component-based methods. Here, we propose a method to transform the parameters of linear tangent space models into interpretable patterns. Using typical assumptions, we show that this approach identifies the true patterns of latent sources, encoding a target signal. In simulations and two real MEG and EEG datasets, we demonstrate the validity of the proposed approach and investigate its behavior when the model assumptions are violated. Our results confirm that Riemannian tangent space methods are robust to differences in the source patterns across observations. We found that this robustness property also transfers to the associated patterns.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Magnetoencefalografía , Simulación del Espacio
3.
Front Hum Neurosci ; 15: 687252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630055

RESUMEN

Motor imagery is a popular technique employed as a motor rehabilitation tool, or to control assistive devices to substitute lost motor function. In both said areas of application, artificial somatosensory input helps to mirror the sensorimotor loop by providing kinesthetic feedback or guidance in a more intuitive fashion than via visual input. In this work, we study directional and movement-related information in electroencephalographic signals acquired during a visually guided center-out motor imagery task in two conditions, i.e., with and without additional somatosensory input in the form of vibrotactile guidance. Imagined movements to the right and forward could be discriminated in low-frequency electroencephalographic amplitudes with group level peak accuracies of 70% with vibrotactile guidance, and 67% without vibrotactile guidance. The peak accuracies with and without vibrotactile guidance were not significantly different. Furthermore, the motor imagery could be classified against a resting baseline with group level accuracies between 76 and 83%, using either low-frequency amplitude features or µ and ß power spectral features. On average, accuracies were higher with vibrotactile guidance, while this difference was only significant in the latter set of features. Our findings suggest that directional information in low-frequency electroencephalographic amplitudes is retained in the presence of vibrotactile guidance. Moreover, they hint at an enhancing effect on motor-related µ and ß spectral features when vibrotactile guidance is provided.

4.
Front Hum Neurosci ; 15: 635777, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716698

RESUMEN

CYBATHLON is an international championship where people with severe physical disabilities compete with the aid of state-of-the-art assistive technology. In one of the disciplines, the BCI Race, tetraplegic pilots compete in a computer game race by controlling an avatar with a brain-computer interface (BCI). This competition offers a perfect opportunity for BCI researchers to study long-term training effects in potential end-users, and to evaluate BCI performance in a realistic environment. In this work, we describe the BCI system designed by the team Mirage91 for participation in the CYBATHLON BCI Series 2019, as well as in the CYBATHLON 2020 Global Edition. Furthermore, we present the BCI's interface with the game and the main methodological strategies, along with a detailed evaluation of its performance over the course of the training period, which lasted 14 months. The developed system was a 4-class BCI relying on task-specific modulations of brain rhythms. We implemented inter-session transfer learning to reduce calibration time, and to reinforce the stability of the brain patterns. Additionally, in order to compensate for potential intra-session shifts in the features' distribution, normalization parameters were continuously adapted in an unsupervised fashion. Across the aforementioned 14 months, we recorded 26 game-based training sessions. Between the first eight sessions, and the final eight sessions leading up to the CYBATHLON 2020 Global Edition, the runtimes significantly improved from 255 ± 23 s (mean ± std) to 225 ± 22 s, respectively. Moreover, we observed a significant increase in the classifier's accuracy from 46 to 53%, driven by more distinguishable brain patterns. Compared to conventional single session, non-adaptive BCIs, the inter-session transfer learning and unsupervised intra-session adaptation techniques significantly improved the performance. This long-term study demonstrates that regular training helped the pilot to significantly increase the distance between task-specific patterns, which resulted in an improvement of performance, both with respect to class separability in the calibration data, and with respect to the game. Furthermore, it shows that our methodological approaches were beneficial in transferring the performance across sessions, and most importantly to the CYBATHLON competitions.

5.
J Neural Eng ; 17(5): 056032, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33052887

RESUMEN

OBJECTIVE: An important part of restoring motor control via a brain-computer interface is to close the sensorimotor feedback loop. As part of our investigations into vibrotactile kinaesthetic feedback of arm movements, we studied electroencephalographic signals in the δ, µ and ß bands obtained during a center-out movement task with four conditions: movement with real-time kinaesthetic feedback, movement with static vibrations, movement without vibrotactile input, and no movement with sham feedback. APPROACH: Participants performed center-out movements with their palm on a flat table surface. One of three movement directions was cued visually before the movement. The palm position was tracked in order to provide real-time vibrotactile feedback. All analyses were performed offline. MAIN RESULTS: Movement-related cortical potentials exhibit minor discrepancies between movement conditions as well as between movement directions, in peak amplitude and shape. Classification of each movement condition and each direction against rest yields peak accuracies of 60%-65% using low-frequency amplitude features, and 90% using µ and ß power features. Within-class accuracies of four-way classification between conditions based on low-frequency amplitude features are around chance level for the movement conditions with vibrotactile stimulation, slightly above chance level for the movement condition without stimulation, and considerably higher for the non-movement condition. Four-way classification between conditions based on µ and ß power features yields within-class accuracies slightly above chance level for all movement conditions, and considerably higher for the non-movement condition. Within-class accuracies of three-way classification between directions are slightly above chance level for low-frequency amplitude features, and at chance level for power features. SIGNIFICANCE: We found that the vibrotactile stimulation does not interfere with movement-related features in the δ, µ and ß frequency ranges. Our feedback system may therefore feasibly be deployed in conjunction with a BCI based on movement-related cortical potentials or sensorimotor rhythms, without adversely affecting control.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Retroalimentación , Mano , Humanos , Cinestesia , Movimiento
6.
J Neuroeng Rehabil ; 14(1): 129, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29282131

RESUMEN

BACKGROUND: In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. METHODS: We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. RESULTS: We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. DISCUSSION: We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. CONCLUSIONS: The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.


Asunto(s)
Interfaces Cerebro-Computador , Personas con Discapacidad/rehabilitación , Dispositivos de Autoayuda , Interfaz Usuario-Computador , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...