Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sci Rep ; 14(1): 13239, 2024 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853172

RESUMEN

Image segmentation techniques play a vital role in aiding COVID-19 diagnosis. Multi-threshold image segmentation methods are favored for their computational simplicity and operational efficiency. Existing threshold selection techniques in multi-threshold image segmentation, such as Kapur based on exhaustive enumeration, often hamper efficiency and accuracy. The whale optimization algorithm (WOA) has shown promise in addressing this challenge, but issues persist, including poor stability, low efficiency, and accuracy in COVID-19 threshold image segmentation. To tackle these issues, we introduce a Latin hypercube sampling initialization-based multi-strategy enhanced WOA (CAGWOA). It incorporates a COS sampling initialization strategy (COSI), an adaptive global search approach (GS), and an all-dimensional neighborhood mechanism (ADN). COSI leverages probability density functions created from Latin hypercube sampling, ensuring even solution space coverage to improve the stability of the segmentation model. GS widens the exploration scope to combat stagnation during iterations and improve segmentation efficiency. ADN refines convergence accuracy around optimal individuals to improve segmentation accuracy. CAGWOA's performance is validated through experiments on various benchmark function test sets. Furthermore, we apply CAGWOA alongside similar methods in a multi-threshold image segmentation model for comparative experiments on lung X-ray images of infected patients. The results demonstrate CAGWOA's superiority, including better image detail preservation, clear segmentation boundaries, and adaptability across different threshold levels.


Asunto(s)
Algoritmos , COVID-19 , SARS-CoV-2 , COVID-19/virología , COVID-19/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Ballenas , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
2.
Artif Intell Med ; 153: 102886, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749310

RESUMEN

Tuberculous pleural effusion poses a significant threat to human health due to its potential for severe disease and mortality. Without timely treatment, it may lead to fatal consequences. Therefore, early identification and prompt treatment are crucial for preventing problems such as chronic lung disease, respiratory failure, and death. This study proposes an enhanced differential evolution algorithm based on colony predation and dispersed foraging strategies. A series of experiments conducted on the IEEE CEC 2017 competition dataset validated the global optimization capability of the method. Additionally, a binary version of the algorithm is introduced to assess the algorithm's ability to address feature selection problems. Comprehensive comparisons of the effectiveness of the proposed algorithm with 8 similar algorithms were conducted using public datasets with feature sizes ranging from 10 to 10,000. Experimental results demonstrate that the proposed method is an effective feature selection approach. Furthermore, a predictive model for tuberculous pleural effusion is established by integrating the proposed algorithm with support vector machines. The performance of the proposed model is validated using clinical records collected from 140 tuberculous pleural effusion patients, totaling 10,780 instances. Experimental results indicate that the proposed model can identify key correlated indicators such as pleural effusion adenosine deaminase, temperature, white blood cell count, and pleural effusion color, aiding in the clinical feature analysis of tuberculous pleural effusion and providing early warning for its treatment and prediction.


Asunto(s)
Algoritmos , Derrame Pleural , Máquina de Vectores de Soporte , Tuberculosis Pleural , Humanos , Derrame Pleural/microbiología , Tuberculosis Pleural/diagnóstico , Adenosina Desaminasa/metabolismo , Recuento de Leucocitos
3.
Sci Rep ; 14(1): 8599, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615048

RESUMEN

Modern medicine has produced large genetic datasets of high dimensions through advanced gene sequencing technology, and processing these data is of great significance for clinical decision-making. Gene selection (GS) is an important data preprocessing technique that aims to select a subset of feature information to improve performance and reduce data dimensionality. This study proposes an improved wrapper GS method based on forensic-based investigation (FBI). The method introduces the search mechanism of the slime mould algorithm in the FBI to improve the original FBI; the newly proposed algorithm is named SMA_FBI; then GS is performed by converting the continuous optimizer to a binary version of the optimizer through a transfer function. In order to verify the superiority of SMA_FBI, experiments are first executed on the 30-function test set of CEC2017 and compared with 10 original algorithms and 10 state-of-the-art algorithms. The experimental results show that SMA_FBI is better than other algorithms in terms of finding the optimal solution, convergence speed, and robustness. In addition, BSMA_FBI (binary version of SMA_FBI) is compared with 8 binary algorithms on 18 high-dimensional genetic data from the UCI repository. The results indicate that BSMA_FBI is able to obtain high classification accuracy with fewer features selected in GS applications. Therefore, SMA_FBI is considered an optimization tool with great potential for dealing with global optimization problems, and its binary version, BSMA_FBI, can be used for GS tasks.


Asunto(s)
Algoritmos , Physarum polycephalum , Toma de Decisiones Clínicas , Técnicas Genéticas , Tecnología
4.
Comput Biol Med ; 172: 108064, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452469

RESUMEN

Stochastic optimization methods have gained significant prominence as effective techniques in contemporary research, addressing complex optimization challenges efficiently. This paper introduces the Parrot Optimizer (PO), an efficient optimization method inspired by key behaviors observed in trained Pyrrhura Molinae parrots. The study features qualitative analysis and comprehensive experiments to showcase the distinct characteristics of the Parrot Optimizer in handling various optimization problems. Performance evaluation involves benchmarking the proposed PO on 35 functions, encompassing classical cases and problems from the IEEE CEC 2022 test sets, and comparing it with eight popular algorithms. The results vividly highlight the competitive advantages of the PO in terms of its exploratory and exploitative traits. Furthermore, parameter sensitivity experiments explore the adaptability of the proposed PO under varying configurations. The developed PO demonstrates effectiveness and superiority when applied to engineering design problems. To further extend the assessment to real-world applications, we included the application of PO to disease diagnosis and medical image segmentation problems, which are highly relevant and significant in the medical field. In conclusion, the findings substantiate that the PO is a promising and competitive algorithm, surpassing some existing algorithms in the literature. The supplementary files and open source codes of the proposed Parrot Optimizer (PO) is available at https://aliasgharheidari.com/PO.html and https://github.com/junbolian/PO.


Asunto(s)
Loros , Animales , Algoritmos , Benchmarking , Fenotipo
5.
Basic Clin Pharmacol Toxicol ; 134(2): 250-271, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945549

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants and manufactured substances conferring toxicity to human health. The present study investigated whether pyrene, a type of PAH, harms rats. Our research provides an effective feature selection strategy for the animal dataset from Wenzhou Medical University's Experimental Animal Center to thoroughly examine the impacts of PAH toxicity on rat features. Initially, we devised a high-performance optimization method (SCBA) and added the Sobol sequence, vertical crossover and horizontal crossover mechanisms to the bat algorithm (BA). The SCBA-KELM model, which combines SCBA with the kernel extreme learning machine model (KELM), has excellent accuracy and high stability for selecting features. Benchmark function tests are then used in this research to verify the overall optimization performance of SCBA. In this paper, the feature selection performance of SCBA-KELM is verified using various comparative experiments. According to the results, the features of the genes PXR, CAR, CYP2B1/2 and CYP1A1/2 have the most impact on rats. The SCBA-KELM model's classification performance for the gene dataset was 100%, and the model's precision value for the public dataset was around 96%, as determined by the classification index. In conclusion, the model utilized in this research is anticipated to be a reliable and valuable approach for toxicological classification and assessment.


Asunto(s)
Algoritmos , Hidrocarburos Policíclicos Aromáticos , Humanos , Animales , Ratas , Pirenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad
6.
Sensors (Basel) ; 23(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37960486

RESUMEN

Real-time monitoring of rock stability during the mining process is critical. This paper first proposed a RIME algorithm (CCRIME) based on vertical and horizontal crossover search strategies to improve the quality of the solutions obtained by the RIME algorithm and further enhance its search capabilities. Then, by constructing a binary version of CCRIME, the key parameters of FKNN were optimized using a binary conversion method. Finally, a discrete CCRIME-based BCCRIME was developed, which uses an S-shaped function transformation approach to address the feature selection issue by converting the search result into a real number that can only be zero or one. The performance of CCRIME was examined in this study from various perspectives, utilizing 30 benchmark functions from IEEE CEC2017. Basic algorithm comparison tests and sophisticated variant algorithm comparison experiments were also carried out. In addition, this paper also used collected microseismic and blasting data for classification prediction to verify the ability of the BCCRIME-FKNN model to process real data. This paper provides new ideas and methods for real-time monitoring of rock mass stability during deep well mineral resource mining.

7.
Biomimetics (Basel) ; 8(6)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887615

RESUMEN

Image segmentation methods have received widespread attention in face image recognition, which can divide each pixel in the image into different regions and effectively distinguish the face region from the background for further recognition. Threshold segmentation, a common image segmentation method, suffers from the problem that the computational complexity shows exponential growth with the increase in the segmentation threshold level. Therefore, in order to improve the segmentation quality and obtain the segmentation thresholds more efficiently, a multi-threshold image segmentation framework based on a meta-heuristic optimization technique combined with Kapur's entropy is proposed in this study. A meta-heuristic optimization method based on an improved grey wolf optimizer variant is proposed to optimize the 2D Kapur's entropy of the greyscale and nonlocal mean 2D histograms generated by image computation. In order to verify the advancement of the method, experiments compared with the state-of-the-art method on IEEE CEC2020 and face image segmentation public dataset were conducted in this paper. The proposed method has achieved better results than other methods in various tests at 18 thresholds with an average feature similarity of 0.8792, an average structural similarity of 0.8532, and an average peak signal-to-noise ratio of 24.9 dB. It can be used as an effective tool for face segmentation.

8.
iScience ; 26(10): 107896, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860760

RESUMEN

An improved whale optimization algorithm (SWEWOA) is presented for global optimization issues. Firstly, the sine mapping initialization strategy (SS) is used to generate the population. Secondly, the escape energy (EE) is introduced to balance the exploration and exploitation of WOA. Finally, the wormhole search (WS) strengthens the capacity for exploitation. The hybrid design effectively reinforces the optimization capability of SWEWOA. To prove the effectiveness of the design, SWEWOA is performed in two test sets, CEC 2017 and 2022, respectively. The advantage of SWEWOA is demonstrated in 26 superior comparison algorithms. Then a new feature selection method called BSWEWOA-KELM is developed based on the binary SWEWOA and kernel extreme learning machine (KELM). To verify its performance, 8 high-performance algorithms are selected and experimentally studied in 16 public datasets of different difficulty. The test results demonstrate that SWEWOA performs excellently in selecting the most valuable features for classification problems.

9.
iScience ; 26(10): 107736, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810256

RESUMEN

The slime mould algorithm (SMA) is a population-based swarm intelligence optimization algorithm that simulates the oscillatory foraging behavior of slime moulds. To overcome its drawbacks of slow convergence speed and premature convergence, this paper proposes an improved algorithm named PSMADE, which integrates the differential evolution algorithm (DE) and the Powell mechanism. PSMADE utilizes crossover and mutation operations of DE to enhance individual diversity and improve global search capability. Additionally, it incorporates the Powell mechanism with a taboo table to strengthen local search and facilitate convergence toward better solutions. The performance of PSMADE is evaluated by comparing it with 14 metaheuristic algorithms (MA) and 15 improved MAs on the CEC 2014 benchmarks, as well as solving four constrained real-world engineering problems. Experimental results demonstrate that PSMADE effectively compensates for the limitations of SMA and exhibits outstanding performance in solving various complex problems, showing potential as an effective problem-solving tool.

10.
Biomimetics (Basel) ; 8(5)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37754192

RESUMEN

The Hunger Games Search (HGS) is an innovative optimizer that operates without relying on gradients and utilizes a population-based approach. It draws inspiration from the collaborative foraging activities observed in social animals in their natural habitats. However, despite its notable strengths, HGS is subject to limitations, including inadequate diversity, premature convergence, and susceptibility to local optima. To overcome these challenges, this study introduces two adjusted strategies to enhance the original HGS algorithm. The first adaptive strategy combines the Logarithmic Spiral (LS) technique with Opposition-based Learning (OBL), resulting in the LS-OBL approach. This strategy plays a pivotal role in reducing the search space and maintaining population diversity within HGS, effectively augmenting the algorithm's exploration capabilities. The second adaptive strategy, the dynamic Rosenbrock Method (RM), contributes to HGS by adjusting the search direction and step size. This adjustment enables HGS to escape from suboptimal solutions and enhances its convergence accuracy. Combined, these two strategies form the improved algorithm proposed in this study, referred to as RLHGS. To assess the efficacy of the introduced strategies, specific experiments are designed to evaluate the impact of LS-OBL and RM on enhancing HGS performance. The experimental results unequivocally demonstrate that integrating these two strategies significantly enhances the capabilities of HGS. Furthermore, RLHGS is compared against eight state-of-the-art algorithms using 23 well-established benchmark functions and the CEC2020 test suite. The experimental results consistently indicate that RLHGS outperforms the other algorithms, securing the top rank in both test suites. This compelling evidence substantiates the superior functionality and performance of RLHGS compared to its counterparts. Moreover, RLHGS is applied to address four constrained real-world engineering optimization problems. The final results underscore the effectiveness of RLHGS in tackling such problems, further supporting its value as an efficient optimization method.

11.
iScience ; 26(7): 107169, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485348

RESUMEN

We propose a two-stage deep residual attention generative adversarial network (TSDRA-GAN) for inpainting iris textures obscured by eyelids. This two-stage generation approach ensures that the semantic and texture information of the generated images is preserved. In the second stage of the fine network, a modified residual block (MRB) is used to further extract features and mitigate the performance degradation caused by the deepening of the network, thus following the concept of using a residual structure as a component of the encoder. In addition, for the skip connection part of this phase, we propose a dual-attention computing connection (DACC) to computationally fuse the features of the encoder and decoder in both directions to achieve more effective information fusion for iris inpainting tasks. Under completely fair and equal experimental conditions, it is shown that the method presented in this paper can effectively restore original iris images and improve recognition accuracy.

12.
Biomimetics (Basel) ; 8(3)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504156

RESUMEN

Recently, swarm intelligence algorithms have received much attention because of their flexibility for solving complex problems in the real world. Recently, a new algorithm called the colony predation algorithm (CPA) has been proposed, taking inspiration from the predatory habits of groups in nature. However, CPA suffers from poor exploratory ability and cannot always escape solutions known as local optima. Therefore, to improve the global search capability of CPA, an improved variant (OLCPA) incorporating an orthogonal learning strategy is proposed in this paper. Then, considering the fact that the swarm intelligence algorithm can go beyond the local optimum and find the global optimum solution, a novel OLCPA-CNN model is proposed, which uses the OLCPA algorithm to tune the parameters of the convolutional neural network. To verify the performance of OLCPA, comparison experiments are designed to compare with other traditional metaheuristics and advanced algorithms on IEEE CEC 2017 benchmark functions. The experimental results show that OLCPA ranks first in performance compared to the other algorithms. Additionally, the OLCPA-CNN model achieves high accuracy rates of 97.7% and 97.8% in classifying the MIT-BIH Arrhythmia and European ST-T datasets.

13.
Biomed Signal Process Control ; 86: 105147, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37361197

RESUMEN

Since the outbreak of COVID-19, it has seriously endangered the health of human beings. Computer automatic segmentation of COVID-19 X-ray images is an important means to assist doctors in rapid and accurate diagnosis. Therefore, this paper proposes a modified FOA (EEFOA) with two optimization strategies added to the original FOA, including elite natural evolution (ENE) and elite random mutation (ERM). To be specific, ENE and ERM can effectively speed up the convergence and deal with the problem of local optima, respectively. The outstanding performance of EEFOA was confirmed by experimental results comparing EEFOA with the original FOA, other FOA variants, and advanced algorithms at CEC2014. After that, EEFOA is implemented for multi-threshold image segmentation (MIS) of COVID-19 X-ray images, where a 2D histogram consisting of the original greyscale image and the non-local means image is used to represent the image information, and Rényi's entropy is used as the objective function to find the maximum value. The evaluation results of the MIS segmentation experiments show that, whether high or low threshold, EEFOA can achieve higher quality segmentation results and greater robustness than other advanced segmentation methods.

14.
iScience ; 26(5): 106679, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216098

RESUMEN

The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.

15.
Front Neuroinform ; 17: 1126783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006638

RESUMEN

The novel coronavirus pneumonia (COVID-19) is a respiratory disease of great concern in terms of its dissemination and severity, for which X-ray imaging-based diagnosis is one of the effective complementary diagnostic methods. It is essential to be able to separate and identify lesions from their pathology images regardless of the computer-aided diagnosis techniques. Therefore, image segmentation in the pre-processing stage of COVID-19 pathology images would be more helpful for effective analysis. In this paper, to achieve highly effective pre-processing of COVID-19 pathological images by using multi-threshold image segmentation (MIS), an enhanced version of ant colony optimization for continuous domains (MGACO) is first proposed. In MGACO, not only a new move strategy is introduced, but also the Cauchy-Gaussian fusion strategy is incorporated. It has been accelerated in terms of convergence speed and has significantly enhanced its ability to jump out of the local optimum. Furthermore, an MIS method (MGACO-MIS) based on MGACO is developed, where it applies the non-local means, 2D histogram as the basis, and employs 2D Kapur's entropy as the fitness function. To demonstrate the performance of MGACO, we qualitatively analyze it in detail and compare it with other peers on 30 benchmark functions from IEEE CEC2014, which proves that it has a stronger capability of solving problems over the original ant colony optimization for continuous domains. To verify the segmentation effect of MGACO-MIS, we conducted a comparison experiment with eight other similar segmentation methods based on real pathology images of COVID-19 at different threshold levels. The final evaluation and analysis results fully demonstrate that the developed MGACO-MIS is sufficient to obtain high-quality segmentation results in the COVID-19 image segmentation and has stronger adaptability to different threshold levels than other methods. Therefore, it has been well-proven that MGACO is an excellent swarm intelligence optimization algorithm, and MGACO-MIS is also an excellent segmentation method.

16.
Biomed Signal Process Control ; 83: 104638, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36741073

RESUMEN

Coronavirus Disease 2019 (COVID-19), instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has hugely impacted global public health. To identify and intervene in critically ill patients early, this paper proposes an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier. In order to improve the problem that WOA is prone to fall into local optimum, an improved version named RRWOA is proposed based on the random contraction strategy (RCS) and the Rosenbrock method. To verify the capability of the proposed algorithm, RRWOA is tested against nine classical metaheuristics, nine advanced metaheuristics, and seven well-known WOA variants based on 30 IEEE CEC2014 competition functions, respectively. The experimental results in mean, standard deviation, the Friedman test, and the Wilcoxon signed-rank test are considered, proving that RRWOA won first place on 18, 24, and 25 test functions, respectively. In addition, a binary version of the algorithm, called BRRWOA, is developed for feature selection problems. An efficient prediction model based on BRRWOA and KNN classifier is proposed and compared with seven existing binary metaheuristics based on 15 datasets of UCI repositories. The experimental results show that the proposed algorithm obtains the smallest fitness value in eleven datasets and can solve combinatorial optimization problems, indicating that it still performs well in discrete cases. More importantly, the model was compared with five other algorithms on the COVID-19 dataset. The experiment outcomes demonstrate that the model offers a scientific framework to support clinical diagnostic decision-making. Therefore, RRWOA is an effectively improved optimizer with efficient value.

17.
Front Neuroinform ; 17: 1096053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756212

RESUMEN

Aiming at the poor robustness and adaptability of traditional control methods for different situations, the deep deterministic policy gradient (DDPG) algorithm is improved by designing a hybrid function that includes different rewards superimposed on each other. In addition, the experience replay mechanism of DDPG is also improved by combining priority sampling and uniform sampling to accelerate the DDPG's convergence. Finally, it is verified in the simulation environment that the improved DDPG algorithm can achieve accurate control of the robot arm motion. The experimental results show that the improved DDPG algorithm can converge in a shorter time, and the average success rate in the robotic arm end-reaching task is as high as 91.27%. Compared with the original DDPG algorithm, it has more robust environmental adaptability.

18.
J Bionic Eng ; 20(3): 1198-1262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36619872

RESUMEN

Coronavirus Disease 2019 (COVID-19) is the most severe epidemic that is prevalent all over the world. How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic. Moreover, it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images. As we all know, image segmentation is a critical stage in image processing and analysis. To achieve better image segmentation results, this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO. Then utilizes RDMVO to calculate the maximum Kapur's entropy for multilevel threshold image segmentation. This image segmentation scheme is called RDMVO-MIS. We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS. First, RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions. Second, the image segmentation experiment was carried out using RDMVO-MIS, and some meta-heuristic algorithms were selected as comparisons. The test image dataset includes Berkeley images and COVID-19 Chest X-ray images. The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.

19.
Comput Biol Med ; 158: 106501, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36635120

RESUMEN

Computerized tomography (CT) is of great significance for the localization and diagnosis of liver cancer. Many scholars have recently applied deep learning methods to segment CT images of liver and liver tumors. Unlike natural images, medical image segmentation is usually more challenging due to its nature. Aiming at the problem of blurry boundaries and complex gradients of liver tumor images, a deep supervision network based on the combination of high-efficiency channel attention and Res-UNet++ (ECA residual UNet++) is proposed for liver CT image segmentation, enabling fully automated end-to-end segmentation of the network. In this paper, the UNet++ structure is selected as the baseline. The residual block feature encoder based on context awareness enhances the feature extraction ability and solves the problem of deep network degradation. The introduction of an efficient attention module combines the depth of the feature map with spatial information to alleviate the uneven sample distribution impact; Use DiceLoss to replace the cross-entropy loss function to optimize network parameters. The liver and liver tumor segmentation accuracy on the LITS dataset was 95.8% and 89.3%, respectively. The results show that compared with other algorithms, the method proposed in this paper achieves a good segmentation performance, which has specific reference significance for computer-assisted diagnosis and treatment to attain fine segmentation of liver and liver tumors.


Asunto(s)
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Algoritmos , Diagnóstico por Computador , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador
20.
Comput Biol Med ; 153: 106338, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640529

RESUMEN

Automated diagnostic techniques based on computed tomography (CT) scans of the chest for the coronavirus disease (COVID-19) help physicians detect suspected cases rapidly and precisely, which is critical in providing timely medical treatment and preventing the spread of epidemic outbreaks. Existing capsule networks have played a significant role in automatic COVID-19 detection systems based on small datasets. However, extracting key slices is difficult because CT scans typically show many scattered lesion sections. In addition, existing max pooling sampling methods cannot effectively fuse the features from multiple regions. Therefore, in this study, we propose an attention capsule sampling network (ACSN) to detect COVID-19 based on chest CT scans. A key slices enhancement method is used to obtain critical information from a large number of slices by applying attention enhancement to key slices. Then, the lost active and background features are retained by integrating two types of sampling. The results of experiments on an open dataset of 35,000 slices show that the proposed ACSN achieve high performance compared with state-of-the-art models and exhibits 96.3% accuracy, 98.8% sensitivity, 93.8% specificity, and 98.3% area under the receiver operating characteristic curve.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos , Tórax , Curva ROC , Prueba de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...