Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Lasers Med Sci ; 10(Suppl 1): S59-S63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32021675

RESUMEN

Introduction: Radiation therapy (RT) as a common method for cancer treatment could result in some side effects. The molecular investigation is one of the approaches that could assist in decrypting the molecular mechanisms of this incident. For this aim, protein-protein interaction (PPI) network analysis as a complementary study of the proteome is conducted to explore the RT effect on brain cancer after the early stage of exposure prior to the appearance of the skin lesion. Methods: Cytoscape 3.7.2 and its plug-ins were used to analyze the network of differential expression of proteins (DEPs) in the treatment condition, and the centrality and pathway enrichment was conducted by the use of NetworkAnalyzer and ClueGO+CluePedia. Results: A network of 15 DEPs indicated that 6 nodes were key players in the network stability and SERPINC1 and F5 were from the query proteins. The pathways of post-translational protein phosphorylation, platelet degranulation, and complement and coagulation cascades were the most highlighted ones for the central nodes that could be affected in RT. Conclusion: The central proteins of the network of early-stage treatments could have additional importance in the mechanisms of radiotherapy response prior to skin lesions. Introduced biomarkers can be used for the patients' follow-up. These candidates are worth precise attention for this type of therapy after approving by validation studies.

2.
Gastroenterol Hepatol Bed Bench ; 9(4): 268-277, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895852

RESUMEN

AIM: The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. BACKGROUND: Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. MATERIAL AND METHODS: In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. RESULTS: According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. CONCLUSION: Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA