Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Med Chem ; 19(10): 1037-1048, 2023.
Article En | MEDLINE | ID: mdl-37464836

INTRODUCTION: The attractive biological actions of the eicosatrienoic acids (EETs) and endocannabinoids (eCBs) are terminated by means of enzymatic hydrolysis via soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) enzymes. Simultaneous inhibition of both enzymes is considered a novel approach in the treatment of inflammatory and neuropathic pain. METHODS: In this study, a novel series of tetrazole derivatives as dual sEH/FAAH inhibitors were designed, synthesized, and biologically evaluated. Compounds 6c, 7d, and 8a, the most potent inhibitors against FAAH and sEH enzymes with acceptable IC50 values, significantly decreased carrageenan- induced paw edema 5h after carrageenan injection compared to the control group compound. In addition, compound 7d exhibited a significant reduction in pain scores compared to the control group. RESULTS: Docking studies showed that the presented dual inhibitors could bind to the essential residues in the catalytic sites of both enzymes. In silico prediction of several pharmacokinetic properties suggests that these dual inhibitors could potentially be orally active agents. CONCLUSION: These structures will be a valuable scaffold to develop soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase.

2.
Iran J Pharm Res ; 22(1): e138273, 2023.
Article En | MEDLINE | ID: mdl-38444716

Epilepsy, as a neurological disease, can be defined as frequent seizure attacks. Further, it affects many other aspects of patients' mental activities, such as learning and memory. Scorpion venoms have gained notice as compounds with potential antiepileptic properties. Among them, Buthotus schach (BS) is one of the Iranian scorpions studied by Aboutorabi et al., who fractionated, characterized, and tested this compound using electrophysiological techniques in brain slices (patch-clamp recording). In the present study, the fraction obtained from gel electrophoresis was investigated through behavioral and electrophysiological assays. At first, ventricular cannulation was performed in rats, and then the active fraction (i.e., F3), carbamazepine, and the vehicle were microinjected into the brain before seizure induction by the subcutaneous (SC) injection of pentylenetetrazol (PTZ). Seizure behaviors were scaled according to Racine stages. Memory and learning were evaluated using the Y-maze and passive avoidance tests. Other groups entered evoked field potential recording after microinjection and seizure induction. Population spike (PS) and field excitatory postsynaptic potential (fEPSP) were measured. The F3 fraction could prevent the fifth stage and postpone the third stage of seizure compared to the control (carbamazepine) group. There was no significant improvement in memory and learning in the group treated with the F3 fraction. Also, PS amplitude and fEPSP slope increased significantly, and long-term potentiation was successfully formed after the high-frequency stimulation of the performant pathway. Our results support the antiepileptic effects of the F3 fraction of BS venom, evidenced by behavioral and electrophysiological studies. However, the effects of this fraction on memory and learning were not in the same direction, suggesting the involvement of two different pathways.

3.
Iran J Pharm Res ; 21(1): e133668, 2022 Dec.
Article En | MEDLINE | ID: mdl-36896321

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives: Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods: PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results: Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions: The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.

4.
Eur J Pharm Sci ; 166: 105974, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34390829

In continuation of our research to find strong and safe anticonvulsant agents, a number of (arylalkyl)azoles (AAAs) containing naphthylthiazole and naphthyloxazole scaffolds were designed and synthesized. The in vivo anticonvulsant evaluations in BALB/c mice revealed that some of them had significant anticonvulsant activity in both maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy. The best profile of activity was observed with compounds containing imidazole and triazole rings (C1, C6, G1, and G6). In particular, imidazolylmethyl-thiazole C1 with median effective dose (ED50)= 7.9 mg/kg in the MES test, ED50= 27.9 mg/kg in PTZ test, and without any sign of neurotoxicity (in the rotarod test, 100 mg/kg) was the most promising compound. The patch-clamp recording was performed to study the mechanism of action of the representative compound C1 on hippocampal dentate gyrus (DG) cells. The results did not confirm any modulatory effect of C1 on the voltage-gated ion channels (VGICs) or GABAA agonism, but suggested a significant reduction of excitatory postsynaptic currents (EPSCs) frequency on hippocampal DG neurons. Sub-acute toxicity studies revealed that administration of the most active compounds (C1, C6, G1, and G6) at 100 mg/kg bw/day for two weeks did not result in any mortality or significant toxicity as evaluated by assessment of biochemical markers such as lipid peroxidation, intracellular glutathione, total antioxidant capacity, histopathological changes, and mitochondrial functions. Other pharmacological aspects of compounds including mechanistic and ADME properties were investigated computationally and/or experimentally. Molecular docking on the NMDA and AMPA targets suggested that the introduction of the heterocyclic ring in the middle of AAAs significantly affects the affinity of the compounds. The obtained results totally demonstrated that the prototype compound C1 can be considered as a new lead for the development of anticonvulsant agents.


Anticonvulsants , Seizures , Animals , Anticonvulsants/therapeutic use , Azoles/therapeutic use , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Naphthalenes , Pentylenetetrazole , Seizures/chemically induced , Seizures/drug therapy , Structure-Activity Relationship
5.
Neurotox Res ; 39(2): 277-291, 2021 Apr.
Article En | MEDLINE | ID: mdl-32876917

Acrolein is a clear, colorless liquid and a highly reactive α, ß-unsaturated aldehyde. Acrolein, a byproduct and initiator of oxidative stress, has a major role in the pathogenesis of disorders including pulmonary, cardiovascular, atherosclerosis, and neurodegenerative diseases. Environmental or dietary exposure and endogenous production are common sources of acrolein. Widespread exposure to acrolein is a major risk for human health; therefore, we decided to investigate the neurological effects of acrolein. In this study, we used male Sprague-Dawley rats and exposed them orally to acrolein (0.5, 1, 3, and 5 mg/kg/day) for 90 days and investigated the neurobehavioral and electrophysiological disturbances. We also assessed the correlation between neurotoxicity and CSF concentration of acrolein in the rats. The results showed that chronic oral administration of acrolein at 5 mg/kg/day impaired learning and memory in the neurobehavioral tests. In addition, acrolein decreased the release of excitatory neurotransmitters such as glutamate in electrophysiological studies. Our data demonstrated that chronic oral exposure of acrolein at a dose of 5 mg/kg leads to a direct correlation between neurotoxicity and its CSF concentration. In conclusion, exposure to acrolein as a major pollutant in the environment may cause cognitive problems and may have serious neurocognitive effects on humans.


Acrolein/administration & dosage , Cognition/drug effects , Memory/drug effects , Animals , Behavior, Animal/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Male , Membrane Potentials/drug effects , Neurons/drug effects , Neurons/physiology , Rats, Sprague-Dawley
6.
Iran J Pharm Res ; 16(4): 1273-1304, 2017.
Article En | MEDLINE | ID: mdl-29552041

Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered.

...