Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 13(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36354817

RESUMEN

Mosquitoes are the most important vector of arboviruses; thus, controlling mosquito population is a key point for controlling these diseases. Two major factors that influence mosquito population size are the availability of blood hosts and suitable oviposition sites. Behavioral mechanisms by which Culex pipiens biotype molestus mosquitoes locate their hosts or oviposition sites are influenced by physical and chemical factors. The present study evaluated the impact of the colors (for human eyes) red, green, blue and yellow in combination with different light intensities on preferences for oviposition and foraging sites under laboratory conditions. We identified the color red as the overall favored color for both target behaviors, which was only surpassed by black as the foraging stimulus. Altogether, we described two new inexpensive and simple bioassays, which can be used as a mosquito-tracking method for behavioral tests and as an oviposition trap to monitor Culex pipiens biotype molestus populations.

2.
Eur J Pharmacol ; 762: 344-9, 2015 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-26027796

RESUMEN

The synthetic compound N-cyanosulphonamide S0859 has been described as a selective inhibitor of sodium-bicarbonate cotransporters (NBC, SLC4) in mammalian heart (Ch'en et al., 2008). First, for comparison, the electrogenic human NBCe1 (SLC4A4) was heterologously expressed in Xenopus laevis oocytes, where its transport activity was inhibited by S0859 with an IC50 of 9µM. The activity of monocarboxylate transporter (MCT) isoforms 1, 2, and 4 (SLC16A1, SLC16A7, SLC16A3), which transport lactate, pyruvate and ketone bodies, were also heterologously expressed in Xenopus oocytes, and their transport activity was similarly and reversibly inhibited by S0859 with an IC50 of 4-10µM. Partial inhibition of lactate transport by S0859 (50µM) was also obtained in cultured astrocytes of mice. Thus, S0859 appears to be an inhibitor of anion transport with a broader spectrum than previously thought, and may also interfere with cellular metabolite uptake/release.


Asunto(s)
Benzamidas/farmacología , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Transporte Biológico/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ácido Láctico/metabolismo , Ratones , Isoformas de Proteínas/antagonistas & inhibidores , Ratas , Simportadores de Sodio-Bicarbonato/antagonistas & inhibidores , Xenopus
3.
J Biol Chem ; 290(7): 4476-86, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25561737

RESUMEN

Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster (431)EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster (489)EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oocitos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Transporte Biológico , Anhidrasa Carbónica II/genética , Electrofisiología , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Oocitos/citología , Unión Proteica , Isoformas de Proteínas , Ratas , Homología de Secuencia de Aminoácido , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
4.
J Physiol ; 590(10): 2333-51, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22451434

RESUMEN

Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a 'proton collecting antenna' for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate.


Asunto(s)
Astrocitos/metabolismo , Anhidrasa Carbónica II/metabolismo , Cerebelo/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animales , Anhidrasa Carbónica II/deficiencia , Anhidrasa Carbónica II/genética , Células Cultivadas , Femenino , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Oocitos , ARN Interferente Pequeño/genética , Simportadores/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...