Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
medRxiv ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38798390

Background: Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been restricted to locus-based methods that ignore information from the rest of the genome. Methods: To more accurately characterize genes involved in schizophrenia etiology, we applied a combination of highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. We combined both locus-based methods (fine-mapped coding variants, distance to GWAS signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). To validate our findings, we compared them with previous prioritization efforts, known neurodevelopmental genes, and results from the PsyOPS tool. Results: We prioritized 62 schizophrenia genes, 41 of which were also highlighted by our validation methods. In addition to DRD2, the principal target of antipsychotics, we prioritized 9 genes that are targeted by approved or investigational drugs. These included drugs targeting glutamatergic receptors (GRIN2A and GRM3), calcium channels (CACNA1C and CACNB2), and GABAB receptor (GABBR2). These also included genes in loci that are shared with an addiction GWAS (e.g. PDE4B and VRK2). Conclusions: We curated a high-quality list of 62 genes that likely play a role in the development of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new generation of schizophrenia therapies. Rodent models of addiction more closely resemble the human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders could be explored in rodent addiction models, potentially facilitating drug development.

2.
Brain ; 147(6): 1996-2008, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38804604

The LRRK2 G2019S variant is the most common cause of monogenic Parkinson's disease (PD); however, questions remain regarding the penetrance, clinical phenotype and natural history of carriers. We performed a 3.5-year prospective longitudinal online study in a large number of 1286 genotyped LRRK2 G2019S carriers and 109 154 controls, with and without PD, recruited from the 23andMe Research Cohort. We collected self-reported motor and non-motor symptoms every 6 months, as well as demographics, family histories and environmental risk factors. Incident cases of PD (phenoconverters) were identified at follow-up. We determined lifetime risk of PD using accelerated failure time modelling and explored the impact of polygenic risk on penetrance. We also computed the genetic ancestry of all LRRK2 G2019S carriers in the 23andMe database and identified regions of the world where carrier frequencies are highest. We observed that despite a 1 year longer disease duration (P = 0.016), LRRK2 G2019S carriers with PD had similar burden of motor symptoms, yet significantly fewer non-motor symptoms including cognitive difficulties, REM sleep behaviour disorder (RBD) and hyposmia (all P-values ≤ 0.0002). The cumulative incidence of PD in G2019S carriers by age 80 was 49%. G2019S carriers had a 10-fold risk of developing PD versus non-carriers. This rose to a 27-fold risk in G2019S carriers with a PD polygenic risk score in the top 25% versus non-carriers in the bottom 25%. In addition to identifying ancient founding events in people of North African and Ashkenazi descent, our genetic ancestry analyses infer that the G2019S variant was later introduced to Spanish colonial territories in the Americas. Our results suggest LRRK2 G2019S PD appears to be a slowly progressive predominantly motor subtype of PD with a lower prevalence of hyposmia, RBD and cognitive impairment. This suggests that the current prodromal criteria, which are based on idiopathic PD, may lack sensitivity to detect the early phases of LRRK2 PD in G2019S carriers. We show that polygenic burden may contribute to the development of PD in the LRRK2 G2019S carrier population. Collectively, the results should help support screening programmes and candidate enrichment strategies for upcoming trials of LRRK2 inhibitors in early-stage disease.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Female , Male , Middle Aged , Aged , Longitudinal Studies , Genetic Predisposition to Disease/genetics , Adult , Prospective Studies , Heterozygote , Penetrance , Aged, 80 and over , REM Sleep Behavior Disorder/genetics , Mutation
3.
NPJ Parkinsons Dis ; 10(1): 11, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191580

Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.

4.
Ann Neurol ; 95(4): 677-687, 2024 Apr.
Article En | MEDLINE | ID: mdl-38113326

OBJECTIVE: Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology. Multiple genetic and environmental factors have been associated with PD, but most PD risk remains unexplained. The aim of this study was to test for statistical interactions between PD-related genetic and environmental exposures in the 23andMe, Inc. research dataset. METHODS: Using a validated PD polygenic risk score and common PD-associated variants in the GBA gene, we explored interactions between genetic susceptibility factors and 7 lifestyle and environmental factors: body mass index (BMI), type 2 diabetes (T2D), tobacco use, caffeine consumption, pesticide exposure, head injury, and physical activity (PA). RESULTS: We observed that T2D, as well as higher BMI, caffeine consumption, and tobacco use, were associated with lower odds of PD, whereas head injury, pesticide exposure, GBA carrier status, and PD polygenic risk score were associated with higher odds. No significant association was observed between PA and PD. In interaction analyses, we found statistical evidence for an interaction between polygenic risk of PD and the following environmental/lifestyle factors: T2D (p = 6.502 × 10-8), PA (p = 8.745 × 10-5), BMI (p = 4.314 × 10-4), and tobacco use (p = 2.236 × 10-3). Although BMI and tobacco use were associated with lower odds of PD regardless of the extent of individual genetic liability, the direction of the relationship between odds of PD and T2D, as well as PD and PA, varied depending on polygenic risk score. INTERPRETATION: We provide preliminary evidence that associations between some environmental and lifestyle factors and PD may be modified by genotype. ANN NEUROL 2024;95:677-687.


Craniocerebral Trauma , Diabetes Mellitus, Type 2 , Parkinson Disease , Pesticides , Humans , Parkinson Disease/etiology , Parkinson Disease/genetics , Gene-Environment Interaction , Diabetes Mellitus, Type 2/complications , Caffeine , Risk Factors , Genetic Predisposition to Disease/genetics , Genetic Risk Score , Craniocerebral Trauma/complications
5.
Nat Genet ; 56(1): 27-36, 2024 Jan.
Article En | MEDLINE | ID: mdl-38155330

Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations.


Genome-Wide Association Study , Parkinson Disease , Humans , Genome-Wide Association Study/methods , Parkinson Disease/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Ubiquitin Thiolesterase/genetics
6.
medRxiv ; 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38076954

Objective: This study aims to address disparities in risk prediction by evaluating the performance of polygenic risk score (PRS) models using the 90 risk variants across 78 independent loci previously linked to Parkinson's disease (PD) risk across seven diverse ancestry populations. Methods: We conducted a multi-stage study, testing PRS models in predicting PD status across seven different ancestries applying three approaches: 1) PRS adjusted by gender and age; 2) PRS adjusted by gender, age and principal components (PCs); and 3) PRS adjusted by gender, age and percentage of population admixture. These models were built using the largest four population-specific summary statistics of PD risk to date (base data) and individual level data obtained from the Global Parkinson's Genetics Program (target data). We performed power calculations to estimate the minimum sample size required to conduct these analyses. A total of 91 PRS models were developed to investigate cumulative known genetic variation associated with PD risk and age of onset in a global context. Results: We observed marked heterogeneity in risk estimates across non-European ancestries, including East Asians, Central Asians, Latino/Admixed Americans, Africans, African admixed, and Ashkenazi Jewish populations. Risk allele patterns for the 90 risk variants yielded significant differences in directionality, frequency, and magnitude of effect. PRS did not improve in performance when predicting disease status using similar base and target data across multiple ancestries, demonstrating that cumulative PRS models based on current known risk are inherently biased towards European populations. We found that PRS models adjusted by percentage of admixture outperformed models that adjusted for conventional PCs in highly admixed populations. Overall, the clinical utility of our models in individually predicting PD status is limited in concordance with the estimates observed in European populations. Interpretation: This study represents the first comprehensive assessment of how PRS models predict PD risk and age at onset in a multi-ancestry fashion. Given the heterogeneity and distinct genetic architecture of PD across different populations, our assessment emphasizes the need for larger and diverse study cohorts of individual-level target data and well-powered ancestry-specific summary statistics. Our current understanding of PD status unraveled through GWAS in European populations is not generally applicable to other ancestries. Future studies should integrate clinical and *omics level data to enhance the accuracy and predictive power of PRS across diverse populations.

7.
Commun Biol ; 6(1): 1156, 2023 11 13.
Article En | MEDLINE | ID: mdl-37957254

Spouses may affect each other's sleeping behaviour. In 47,420 spouse-pairs from the UK Biobank, we found a weak positive phenotypic correlation between spouses for self-reported sleep duration (r = 0.11; 95% CI = 0.10, 0.12) and a weak inverse correlation for chronotype (diurnal preference) (r = -0.11; -0.12, -0.10), which replicated in up to 127,035 23andMe spouse-pairs. Using accelerometer data on 3454 UK Biobank spouse-pairs, the correlation for derived sleep duration was similar to self-report (r = 0.12; 0.09, 0.15). Timing of diurnal activity was positively correlated (r = 0.24; 0.21, 0.27) in contrast to the inverse correlation for chronotype. In Mendelian randomization analysis, positive effects of sleep duration (mean difference=0.13; 0.04, 0.23 SD per SD) and diurnal activity (0.49; 0.03, 0.94) were observed, as were inverse effects of chronotype (-0.15; -0.26, -0.04) and snoring (-0.15; -0.27, -0.04). Findings support the notion that an individual's sleep may impact that of their partner, promoting opportunities for sleep interventions at the family-level.


Circadian Rhythm , Spouses , Humans , Chronotype , Sleep , Sleep Duration , Male , Female , Mendelian Randomization Analysis
8.
medRxiv ; 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37905151

Background: Hyposmia (loss of smell) is a common early symptom of Parkinson's disease (PD). The shared genetic architecture between hyposmia and PD is unknown. Methods: We leveraged genome-wide association study (GWAS) results for self-assessment of 'ability to smell' and PD diagnosis. Linkage disequilibrium score regression (LDSC) and Local Analysis of [co]Variant Association (LAVA) were used to identify genome-wide and local genetic correlations. Mendelian randomization was used to identify potential causal relationships. Results: LDSC found that sense of smell negatively correlated at a genome-wide level with PD. LAVA found negative correlations in four genetic loci near GBA1, ANAPC4, SNCA, and MAPT. Using Mendelian randomization we found evidence for strong causal relationship between PD and liability towards poorer sense of smell, but weaker evidence for the reverse direction. Conclusions: Hyposmia and PD share genetic liability in only a subset of the major PD risk genes. While there was definitive evidence that PD can lower the sense of smell, there was only suggestive evidence for the reverse. This work highlights the heritability of olfactory function and its relationship with PD heritability and provides further insight into the association between PD and hyposmia.

9.
Res Sq ; 2023 Apr 10.
Article En | MEDLINE | ID: mdl-37090536

Objective: Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. Methods: We assessed a total of 27,590 PD cases, 6,701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. Results: The meta-analysis resulted in 11 significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. At least 9 previously reported pathogenic or risk variants for PD did not pass Bonferroni correction in this analysis. Conclusions: Here, we provide the largest rare variant meta-analysis to date, providing thorough information of variants confirmed, newly identified, or rebutted for their association with PD.

10.
Nat Commun ; 13(1): 7496, 2022 12 05.
Article En | MEDLINE | ID: mdl-36470867

Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention.


Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/genetics , Genome-Wide Association Study , Parkinson Disease/genetics , Brain
12.
JAMA Neurol ; 79(2): 185-193, 2022 02 01.
Article En | MEDLINE | ID: mdl-34982113

Importance: Essential tremor (ET) is one of the most common movement disorders, affecting 5% of the general population older than 65 years. Common variants are thought to contribute toward susceptibility to ET, but no variants have been robustly identified. Objective: To identify common genetic factors associated with risk of ET. Design, Setting, and Participants: Case-control genome-wide association study. Inverse-variance meta-analysis was used to combine cohorts. Multicenter samples collected from European populations were collected from January 2010 to September 2019 as part of an ongoing study. Included patients were clinically diagnosed with or reported having ET. Control individuals were not diagnosed with or reported to have ET. Of 485 250 individuals, data for 483 054 passed data quality control and were used. Main Outcomes and Measures: Genotypes of common variants associated with risk of ET. Results: Of the 483 054 individuals included, there were 7177 with ET (3693 [51.46%] female; mean [SD] age, 62.66 [15.12] years), and 475 877 control individuals (253 785 [53.33%] female; mean [SD] age, 56.40 [17.6] years). Five independent genome-wide significant loci and were identified and were associated with approximately 18% of ET heritability. Functional analyses found significant enrichment in the cerebellar hemisphere, cerebellum, and axonogenesis pathways. Genetic correlation (r), which measures the degree of genetic overlap, revealed significant common variant overlap with Parkinson disease (r, 0.28; P = 2.38 × 10-8) and depression (r, 0.12; P = 9.78 × 10-4). A separate fine-mapping of transcriptome-wide association hits identified genes such as BACE2, LRRN2, DHRS13, and LINC00323 in disease-relevant brain regions, such as the cerebellum. Conclusions and Relevance: The results of this genome-wide association study suggest that a portion of ET heritability can be explained by common genetic variation and can help identify new common genetic risk factors for ET.


Essential Tremor/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Transcriptome
14.
Nat Genet ; 53(9): 1276-1282, 2021 09.
Article En | MEDLINE | ID: mdl-34493870

Late-onset Alzheimer's disease is a prevalent age-related polygenic disease that accounts for 50-70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer's disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer's disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer's disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer's disease to identify further genetic variants that contribute to Alzheimer's pathology.


Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Microglia/cytology , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Proteins/metabolism , Proteolysis , Sample Size
15.
J Parkinsons Dis ; 11(4): 1981-1993, 2021.
Article En | MEDLINE | ID: mdl-34275906

BACKGROUND: Tobacco smoking and alcohol intake have been identified in observational studies as potentially protective factors against developing Parkinson's disease (PD); the impact of body mass index (BMI) on PD risk is debated. Whether such epidemiological associations are causal remains unclear. Mendelian randomsation (MR) uses genetic variants to explore the effects of exposures on outcomes; potentially reducing bias from residual confounding and reverse causation. OBJECTIVE: Using MR, we examined relationships between PD risk and three unhealthy behaviours: tobacco smoking, alcohol intake, and higher BMI. METHODS: 19,924 PD cases and 2,413,087 controls were included in the analysis. We performed genome-wide association studies to identify single nucleotide polymorphisms associated with tobacco smoking, alcohol intake, and BMI. MR analysis of the relationship between each exposure and PD was undertaken using a split-sample design. RESULTS: Ever-smoking reduced the risk of PD (OR 0.955; 95%confidence interval [CI] 0.921-0.991; p = 0.013). Higher daily alcohol intake increased the risk of PD (OR 1.125, 95%CI 1.025-1.235; p = 0.013) and a 1 kg/m2 higher BMI reduced the risk of PD (OR 0.988, 95%CI 0.979-0.997; p = 0.008). Sensitivity analyses did not suggest bias from horizontal pleiotropy or invalid instruments. CONCLUSION: Using split-sample MR in over 2.4 million participants, we observed a protective effect of smoking on risk of PD. In contrast to observational data, alcohol consumption appeared to increase the risk of PD. Higher BMI had a protective effect on PD, but the effect was small.


Alcohol Drinking , Obesity , Parkinson Disease , Smoking , Alcohol Drinking/epidemiology , Alcohol Drinking/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Obesity/epidemiology , Obesity/genetics , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Risk Assessment , Smoking/epidemiology , Smoking/genetics
16.
Ann Neurol ; 90(3): 353-365, 2021 09.
Article En | MEDLINE | ID: mdl-34227697

OBJECTIVE: This work was undertaken in order to identify Parkinson's disease (PD) risk variants in a Latino cohort, to describe the overlap in the genetic architecture of PD in Latinos compared to European-ancestry subjects, and to increase the diversity in PD genome-wide association (GWAS) data. METHODS: We genotyped and imputed 1,497 PD cases and controls recruited from nine clinical sites across South America. We performed a GWAS using logistic mixed models; variants with a p-value <1 × 10-5 were tested in a replication cohort of 1,234 self-reported Latino PD cases and 439,522 Latino controls from 23andMe, Inc. We also performed an admixture mapping analysis where local ancestry blocks were tested for association with PD status. RESULTS: One locus, SNCA, achieved genome-wide significance (p-value <5 × 10-8 ); rs356182 achieved genome-wide significance in both the discovery and the replication cohorts (discovery, G allele: 1.58 OR, 95% CI 1.35-1.86, p-value 2.48 × 10-8 ; 23andMe, G allele: 1.26 OR, 95% CI 1.16-1.37, p-value 4.55 × 10-8 ). In our admixture mapping analysis, a locus on chromosome 14, containing the gene STXBP6, achieved significance in a joint test of ancestries and in the Native American single-ancestry test (p-value <5 × 10-5 ). A second locus on chromosome 6, containing the gene RPS6KA2, achieved significance in the African single-ancestry test (p-value <5 × 10-5 ). INTERPRETATION: This study demonstrated the importance of the SNCA locus for the etiology of PD in Latinos. By leveraging the demographic history of our cohort via admixture mapping, we identified two potential PD risk loci that merit further study. ANN NEUROL 2021;90:353-365.


Genetic Loci/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Hispanic or Latino/genetics , Parkinson Disease/ethnology , Parkinson Disease/genetics , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnosis , Polymorphism, Single Nucleotide/genetics , South America/ethnology
17.
J Pathol ; 254(4): 418-429, 2021 07.
Article En | MEDLINE | ID: mdl-33748968

Human genetics plays an increasingly important role in drug development and population health. Here we review the history of human genetics in the context of accelerating the discovery of therapies, present examples of how human genetics evidence supports successful drug targets, and discuss how polygenic risk scores could be beneficial in various clinical settings. We highlight the value of direct-to-consumer platforms in the era of fast-paced big data biotechnology, and how diverse genetic and health data can benefit society. © 2021 23andMe, Inc. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Drug Discovery , Genome, Human , Humans
18.
J Neurol Neurosurg Psychiatry ; 91(10): 1046-1054, 2020 10.
Article En | MEDLINE | ID: mdl-32934108

OBJECTIVE: To systematically investigate the association of environmental risk factors and prodromal features with incident Parkinson's disease (PD) diagnosis and the interaction of genetic risk with these factors. To evaluate whether existing risk prediction algorithms are improved by the inclusion of genetic risk scores. METHODS: We identified individuals with an incident diagnosis of PD (n=1276) and controls (n=500 406) in UK Biobank. We determined the association of risk factors with incident PD using adjusted logistic regression models. We constructed polygenic risk scores (PRSs) using external weights and selected the best PRS from a subset of the cohort (30%). The PRS was used in a separate testing set (70%) to examine gene-environment interactions and compare predictive models for PD. RESULTS: Strong evidence of association (false discovery rate <0.05) was found between PD and a positive family history of PD, a positive family history of dementia, non-smoking, low alcohol consumption, depression, daytime somnolence, epilepsy and earlier menarche. Individuals with the highest 10% of PRSs had increased risk of PD (OR 3.37, 95% CI 2.41 to 4.70) compared with the lowest risk decile. A higher PRS was associated with earlier age at PD diagnosis and inclusion of the PRS in the PREDICT-PD algorithm led to a modest improvement in model performance. We found evidence of an interaction between the PRS and diabetes. INTERPRETATION: Here, we used UK Biobank data to reproduce several well-known associations with PD, to demonstrate the validity of a PRS and to demonstrate a novel gene-environment interaction, whereby the effect of diabetes on PD risk appears to depend on background genetic risk for PD.


Depression/epidemiology , Diabetes Mellitus/epidemiology , Epilepsy/epidemiology , Gene-Environment Interaction , Parkinson Disease/epidemiology , Adult , Aged , Alcohol Drinking/epidemiology , Biological Specimen Banks , Disorders of Excessive Somnolence/epidemiology , Female , Genetic Predisposition to Disease , Humans , Logistic Models , Male , Menarche , Middle Aged , Parkinson Disease/genetics , Protective Factors , Risk Factors , Smoking/epidemiology , United Kingdom/epidemiology
19.
Ann Neurol ; 88(5): 1043-1047, 2020 11.
Article En | MEDLINE | ID: mdl-32841444

Long-term exposure to lipid-lowering drugs might affect Parkinson's disease (PD) risk. We conducted Mendelian randomization analyses where genetic variants indexed expected effects of modulating lipid-lowering drug targets on PD. Statin exposure was not predicted to increase PD risk, although results were not precise enough to support benefits for prevention clearly (odds ratio [OR] = 0.83; 95% confidence interval [CI] = 0.65, 1.07). Other target results were null, except for variants indicating Apolipoprotein-A5 or Apolipoprotein-C3 inhibition might confer protection. These findings suggest peripheral lipid variation may not have a prominent role in PD etiology, but some related drug targets could influence PD via alternate pathways. ANN NEUROL 2020;88:1043-1047.


Hypolipidemic Agents/therapeutic use , Parkinson Disease/prevention & control , Anticholesteremic Agents , Apolipoprotein A-V/genetics , Apolipoproteins B/metabolism , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Humans , Mendelian Randomization Analysis , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Treatment Outcome , Triglycerides/blood
20.
Nat Commun ; 11(1): 3519, 2020 07 14.
Article En | MEDLINE | ID: mdl-32665587

Estimates from Mendelian randomization studies of unrelated individuals can be biased due to uncontrolled confounding from familial effects. Here we describe methods for within-family Mendelian randomization analyses and use simulation studies to show that family-based analyses can reduce such biases. We illustrate empirically how familial effects can affect estimates using data from 61,008 siblings from the Nord-Trøndelag Health Study and UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Mendelian randomization estimates using unrelated individuals and within family methods reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while Mendelian randomization estimates from samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects were strongly attenuated in within-family Mendelian randomization analyses. Our findings indicate the necessity of controlling for population structure and familial effects in Mendelian randomization studies.


Mendelian Randomization Analysis/methods , Body Mass Index , Epidemiology , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors
...