Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Brain ; 145(9): 2991-3009, 2022 09 14.
Article En | MEDLINE | ID: mdl-34431999

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Epilepsy, Generalized , Epileptic Syndromes , Intellectual Disability , NAV1.6 Voltage-Gated Sodium Channel , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/genetics , Epileptic Syndromes/drug therapy , Epileptic Syndromes/genetics , Genetic Association Studies , Humans , Infant , Intellectual Disability/genetics , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics , Prognosis , Seizures/drug therapy , Seizures/genetics , Sodium Channel Blockers/therapeutic use
2.
Eur J Med Genet ; 64(12): 104349, 2021 Dec.
Article En | MEDLINE | ID: mdl-34619369

In collaboration with the German Angelman syndrome (AS) community, we developed a web-based AS Online Registry to congregate existing as well as future information and scientifically quantify observations made by parents, families and medical professionals. With its user-friendly design as well as its concise and multilingual questionnaire, the registry aims at families who had so far refrained from being recruited by other, more comprehensive and/or English-only, registries. Data can be entered by both parents/families and medical professionals. The study design allows for re-contacting individuals (e.g. to request additional information) enabling collection of longitudinal data. Since its launch in June 2020, more than 200 individuals with AS age 2 month to 83 years have registered and entered their clinical and genetic data. In addition to the German, Turkish, English, Dutch, Italian, Danish and Finnish versions of the registry, we aim for translation into further languages to enable international and user-friendly recruitment of AS individuals. This novel registry will allow for extensive genotype-phenotype correlations and facilitate sharing of de-identified information among clinicians, researchers as well as the Global AS Registry. Furthermore, the registry will allow for identification of individuals suitable for future clinical or pharmacologic trials according to particular genotypic and/or phenotypic properties.


Angelman Syndrome/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Germany/epidemiology , Humans , Infant , Italy/epidemiology , Male , Middle Aged , Registries , Research Personnel/statistics & numerical data , Young Adult
3.
Brain ; 143(10): 2929-2944, 2020 10 01.
Article En | MEDLINE | ID: mdl-32979048

Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.


Adaptor Protein Complex 4/genetics , Corpus Callosum/diagnostic imaging , Magnetic Resonance Imaging/trends , Spastic Paraplegia, Hereditary/diagnostic imaging , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Humans , Infant , Magnetic Resonance Imaging/methods , Male , Middle Aged , Registries , Young Adult
...