Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genetics ; 166(3): 1323-36, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15082551

RESUMEN

The Drosophila short gastrulation gene (sog) encodes a large extracellular protein (Sog) that inhibits signaling by BMP-related ligands. Sog and its vertebrate counterpart Chordin contain four copies of a cysteine repeat (CR) motif defined by 10 cysteine residues spaced in a fixed pattern and a tryptophan residue situated between the first two cysteines. Here we present a structure-function analysis of the CR repeats in Sog, using a series of deletion and point mutation constructs, as well as constructs in which CR domains have been swapped. This analysis indicates that the CR domains are individually dispensable for Sog function but that they are not interchangeable. These studies reveal three different types of Sog activity: intact Sog, which inhibits signaling mediated by the ligand Glass bottom boat (Gbb), a more broadly active class of BMP antagonist referred to as Supersog, and a newly identified activity, which may promote rather than inhibit BMP signaling. Analysis of the activities of CR swap constructs indicates that the CR domains are required for full activity of the various forms of Sog but that the type of Sog activity is determined primarily by surrounding protein sequences. Cumulatively, our analysis suggests that CR domains interact physically with adjacent protein sequences to create forms of Sog with distinct BMP modulatory activities.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cisteína/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Alanina/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Ligandos , Microinyecciones , Mutación Puntual , Estructura Terciaria de Proteína , ARN/genética , ARN/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad , Triptófano/química , Alas de Animales/crecimiento & desarrollo , Xenopus/embriología
2.
Drug Dev Res ; 51(3): 151-158, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27134333

RESUMEN

Studies of nucleotide receptors (P2-receptors) in cells and tissues are complicated by cleavage of phosphate groups from nucleotide agonist ligands by ecto-nucleotidases. Some P2 receptor antagonists may also inhibit ecto-nucleotidases, making these studies even more complex. In order to systematically approach this problem, we investigated structure-activity relationships of pyridoxal-5'-phosphate-6-azophenyl-2,4-disulfonate (PPADS) and 14 derivatives, many potent as antagonists at P2 receptors, as inhibitors of ecto-nucleotidases. The compounds were tested for their ability to inhibit enzymatic nucleotide breakdown by CHO cells stably transfected with plasmids containing the cDNA for rat ecto-apyrase (NTPDase1) and rat ecto-ATPase (NTPDase2). All inhibitors were tested at a concentration of 100 µM and ATP hydrolysis was quantified by HPLC. Maximal inhibition obtained for ecto-apyrase and ecto-ATPase was 60% and 35%, respectively. Most PPADS analogs were better inhibitors of ecto-apyrase than of ecto-ATPase. Compound 8, a phosphate derivative, inhibited ecto-apyrase with no inhibition evident at ecto-ATPase. Comparison of pharmacological data of PPADS analogs at P2 receptors as previously determined showed that four PPADS analogs exhibited selectivity for P2X nucleotide receptors. None of these compounds inhibited ecto-ATPase, while two inhibited the ecto-apyrase. Compound 14, a bisphosphate derivative, inhibited ecto-ATPase without inhibition of ecto-apyrase. This compound only weakly antagonized P2X1 receptors and was inactive at P2X2 and P2Y1 receptors, thus bearing some selectivity for ecto-ATPase. Compound 7, a 5-methylphosphonate derivative, a potent antagonist of P2X1 receptors, was inactive at ecto-apyrase and only weakly inhibitory at ecto-ATPase. Thus, PPADS modifications that enhance selectivity among ecto-nucleotidases and P2 receptors have been identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA