Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(36): 16433-16446, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36047929

RESUMEN

Formic acid is considered as one of the most promising liquid organic hydrogen carriers. Its catalytic dehydrogenation process generally suffers from low activity, low reaction selectivity, low stability of the catalysts, and/or the use of noble-metal-based catalysts. Herein we report a highly selective, efficient, and noble-metal-free photocatalyst for the dehydrogenation of formic acid. This catalyst, UiO-66(COOH)2-Cu, is built by postmetalation of a carboxylic-functionalized Zr-MOF with copper. The visible-light-driven photocatalytic dehydrogenation process through the release of hydrogen and carbon dioxide has been monitored in real-time via operando Fourier transform infrared spectroscopy, which revealed almost 100% selectivity with high stability (over 3 days) and a conversion yield exceeding 60% (around 5 mmol·gcat-1·h-1) under ambient conditions. These performance indicators make UiO-66(COOH)2-Cu among the top photocatalysts for formic acid dehydrogenation. Interestingly, the as-prepared UiO-66(COOH)2-Cu hetero-nanostructure was found to be moderately active under solar irradiation during an induction phase, whereupon it undergoes an in-situ restructuring process through intraframework cross-linking with the formation of the anhydride analogue structure UiO-66(COO)2-Cu and nanoclustering of highly active and stable copper sites, as evidenced by the operando studies coupled with steady-state isotopic transient kinetic experiments, transmission electron microscopy and X-ray photoelectron spectroscopy analyses, and Density Functional Theory calculations. Beyond revealing outstanding catalytic performance for UiO-66(COO)2-Cu, this work delivers an in-depth understanding of the photocatalytic reaction mechanism, which involves evolutive behavior of the postmetalated copper as well as the MOF framework over the reaction. These key findings pave the way toward the engineering of new and efficient catalysts for photocatalytic dehydrogenation of formic acid.

2.
ACS Omega ; 6(44): 29471-29482, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34778619

RESUMEN

The structure and evolution of Pd species in Pd-exchanged zeolite materials intended for use as passive NO x adsorbers were examined under various pretreatment conditions. Using in situ CO-diffuse reflectance infrared spectroscopy, Pd structures were characterized after 500 °C pretreatments in inert (Ar), water (1-2% H2O in Ar), oxidizing (air), and reducing (H2, CO) atmospheres. Two zeolites of similar Si/Al ratios but different framework topologies (Beta, CHA) were found to show different distributions of Pd species, depending on the reducing agent used. Reduction in H2 (500 °C; 10% H2 in Ar) followed by re-oxidation (500 °C; air) led to higher amounts of single-site Pd ions on Pd-CHA than Pd-Beta, whereas high-temperature reduction in CO (500 °C; 1000 ppm CO in Ar) followed by re-oxidation (500 °C; air) led to significant loss of ionic Pd on both Pd-CHA and Pd-Beta, albeit H2 temperature-programmed reduction and XPS experiments suggest that this phenomena may be limited to surface Pd. High-temperature treatments with water (500 °C; 1-2% H2O in Ar) are shown to form either Pd metal or PdO particles, with Pd-Beta being more susceptible to these effects than Pd-CHA. This work suggests that the effects of CO are especially problematic with respect to the durability of these materials in passive NO x adsorption applications, especially in the case of Beta zeolite.

3.
JACS Au ; 1(2): 187-200, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-34467283

RESUMEN

Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity.

4.
J Nanosci Nanotechnol ; 19(8): 4920-4929, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913803

RESUMEN

In this study, Superparamagnetic iron oxide nanoparticles (SPION) were functionalized in one pot with two organic molecules. Firstly, polyethylene glycol (PEG) was mixed for 46 hours to improve steric stability and then, two hours before the end of the reaction, dimercaptosuccinic acid (DMSA) was added to provide negative charges and thiol groups for post-functionalization. Three different molecular weights of PEG were used (550, 2000 and 5000 g mol-1). The main goal of this study was to characterize and quantify accurately the surface of SPION functionalized with two organic molecules. We demonstrated the advantages of coupling thermogravimetric and X-ray photoelectron spectrometry analyses to distinguish accurately the covering of SPION's surface. Thanks to the combination of these two techniques we were able to distinguish the amount of DMSA and PEG on SPION regarding the length of the polymer. We also showed that the length of the PEG influenced the quantity of DMSA adsorbed. With the smallest PEG (550 g mol-1) the presence of DMSA is almost ten times higher than with the two other PEG used proving that long polymers prevent the adsorption of small molecules on the surface of SPION.

5.
ACS Sens ; 4(3): 740-747, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30773874

RESUMEN

We present a new device called a double lateral heterojunction (DLH) as an ammonia sensor in humid atmosphere. It combines polyaniline derivatives in their poor conducting state with a highly conductive molecular material, lutetium bisphthalocyanine, LuPc2. Polyaniline and poly(2,5-dimethoxyaniline) are electrodeposited on ITO interdigitated electrodes, leading to an original device that can be obtained only by electrochemistry and not by other solution processing techniques. Both polymers lead to highly conducting materials that require a neutralization step before their coverage by LuPc2. While the device based on polyaniline shows ohmic behavior, the nonlinear I- V characteristics of the poly(2,5-dimethoxyaniline)-based DLH prove the existence of energy barriers at the interfaces, as demonstrated by impedance spectroscopy. It exhibits a particularly interesting sensitivity to ammonia, at room temperature and in a broad relative humidity range. Thanks to its higher energy barriers, the poly(2,5-dimethoxyaniline)/LuPc2 DLH is the most sensitive device with a limit of detection of 320 ppb. This work paves the way for the use of substituted polyanilines in conductometric sensors not only in the field of air quality monitoring but also in the field of health diagnosis by measurement in human breath.


Asunto(s)
Amoníaco/análisis , Compuestos de Anilina/química , Conductividad Eléctrica , Galvanoplastia/instrumentación , Humedad , Límite de Detección , Polímeros/química , Amoníaco/química , Semiconductores
6.
ACS Appl Mater Interfaces ; 10(23): 19974-19986, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29737156

RESUMEN

In this work, we report for the first time on a comprehensive study of poly(2,3,5,6-tetrafluoroaniline) (PTFANI). Contrary to the nonfluorinated polyaniline (PANI) or its analogues bearing one fluorine atom, PTFANI is a poorly conductive material. We present a comprehensive study of the electrosynthesized PTFANI from its monomer in an acidic aqueous medium. PTFANI was fully characterized by a potential-pH diagram, spectroelectrochemistry, and electrochemical quartz crystal microbalance (EQCM) measurements, as well as by a morphological study. Combined with the X-ray photoelectron spectroscopy (XPS) analysis, it allowed us to understand the redox properties of this polymer compared to those of the unsubstituted PANI. At pH < 1.85, no proton transfer occurred during the electrochemical process, but the insertion of anions at the site of the protonated imines was demonstrated through the EQCM and XPS experiments. PTFANI showed a lower ratio of 1 ClO4- per 3 2,3,5,6-tetrafluoroaniline units compared to that of PANI. The behavior at pH > 1.85 was different; no anion upload was observed during the electron transfer, but 1 H+ per electron was involved during the transition between the leucoemeraldine and emeraldine base forms. It should also be noted that the oxidation of the emeraldine into the pernigraniline form was not accessible in PTFANI because of the electron-withdrawing effects of the fluorine atoms. However, we took advantage of the unique behavior of PTFANI to build heterojunctions, by combining with a highly conductive molecular material, namely lutetium bisphthalocyanine, LuPc2. The obtained double-lateral heterojunction exhibited a particularly interesting sensitivity to ammonia, even under humid atmospheres, with a limit of detection of 450 ppb. This work paves the way for the use of PTFANI in other electronic devices and as a sensor not only in the field of air quality monitoring but also in the field of health diagnosis in measuring the human breath.

7.
Ultrason Sonochem ; 40(Pt B): 9-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28254342

RESUMEN

Self-assembling of undecanthiol (C11SH) on polycrystalline gold was investigated under two different conditions. The kinetics of C11SH grafting was studied without and under high frequency ultrasound irradiation. Two electrochemical experiments were extensively carried out in order to determine electrochemical surface blocking of adsorbed layers as a function of grafting time: chronoamperometry in-situ monitoring and cyclic voltammetry. Interestingly, the grafting process is highly accelerated under sonication, and C11SH modified substrates of good quality are obtained after 3h' immersion under ultrasound irradiation. This would allow elaboration of high-quality alkanethiol modified samples within much shorter times. Water contact angle measurements and X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of adsorbed undecanthiol on the gold surface. A very close link between electrochemical blocking, surface hydrophobicity and species chemical grafting was established.

8.
Dalton Trans ; 46(44): 15386-15398, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29076511

RESUMEN

In this work, we discuss for the first time the elaboration of nanohybrid materials, intended for drug delivery systems, based on titanate nanotubes (TiONts) coated with chitosan polymer (CT). Chitosan has been used to enhance the biocompatibility of hydrothermally synthesized nanotubes in biological medium as a substitute for the polyethylene glycol (PEG) that is generally used for biocompatibility. CT grafting was carried out using two different approaches; the first was made by a covalent bond using two intermediate molecules, and the second is based on electrostatic interactions between CT and TiONts. The type of elaborated bond on the surface of TiONts was proven to influence the colloidal stability of the elaborated nanohybrids, which were studied in different media. A detailed comparison between these two approaches was carried by XPS and TGA-SM techniques. Finally, an original and sensitive cytotoxicity assay consisting of the measurement of the cells' total RNA synthesis was used to prove the non-toxicity of both obtained nanohybrids.

9.
Ultrason Sonochem ; 28: 269-275, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26384908

RESUMEN

Self-assembly of alkylphosphonic acids on stainless steel was investigated under different conditions. Four different alkylphosphonic acids exhibiting alkyl chain of various size were synthesized and studied: butylphosphonic acid (C4P), octylphosphonic acid (C8P), decylphosphonic acid (C10P), and hexadecylphosphonic acid (C16P). Electrochemistry experiments were extensively carried out in order to determine electrochemical surface blocking of adsorbed layers in function of grafting time. In term of surface blocking, an 8h modification time was optimal for all alkylphosphonic acids. Longer immersion times lead to degradation of adsorbed layers. For the first time, grafting of C16P was studied under high frequency ultrasound irradiation. Interestingly, grafting process is highly accelerated under sonication and well-covering C16P modified substrates are obtained after 1h of immersion under ultrasound irradiation. This would allow to elaborate high-quality alkylphosphonic acids modified samples within much shorter times. Water contact angles measurements and X-ray Photoelectrons Spectroscopy (XPS) confirmed presence of adsorbed alkylphosphonic acids on stainless steel surface. A very tight link between electrochemical blocking, surface hydrophobicity and species chemical grafting was established.

10.
Dalton Trans ; 44(3): 1150-60, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25412498

RESUMEN

A one-step hydrothermal treatment of TiO2 powders under strongly basic conditions has been used to synthesize titanate nanoribbons. The nanoparticles were thoroughly characterized using several methods including transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectrometry (XPS) to determine their morphological, structural and chemical characteristics. The influence of the nature and size of the TiO2 precursor and of the reaction duration on the formation of the nanoribbons was investigated. The conditions required to obtain only titanate nanoribbons with a width ranging from 100 to 200 nm and several tens of micrometers in length were determined: the optimum precursor's grain size is about 25 nm and the reaction duration should be at least 20 h. Starting from our experimental results, we propose a multi-step mechanism of formation. In addition, a study of the integrity of the titanate nanoribbon structure reveals that they are made of an assembly of smaller ribbons juxtaposed and piled up on top of one another.


Asunto(s)
Nanoestructuras/química , Titanio/química , Microscopía Electrónica de Transmisión , Nanotubos/química , Espectrometría Raman , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA