Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35884935

RESUMEN

Extracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT-applied within the subacute and chronic phase of SCI (spinal cord injury) on recovery in a rat spinal cord contusion model. Outcomes were evaluated by gait analysis, µCT and histological analysis of spinal cords. A panel of serum-derived miRNAs after SCI and after ESWT was investigated to identify injury-, regeneration- and treatment-associated expression patterns. Rats receiving ESWT showed significant improvement in motor function in both a subacute and a chronic experimental setting. This effect was not reflected in changes in morphology, µCT-parameters or histological markers after ESWT. Expression analysis of various miRNAs, however, revealed changes after SCI and ESWT, with increased miR-375, indicating a neuroprotective effect, and decreased miR-382-5p potentially improving neuroplasticity via its regulatory involvement with BDNF. We were able to demonstrate a functional improvement of ESWT-treated animals after SCI in a subacute and chronic setting. Furthermore, the identification of miR-375 and miR-382-5p could potentially provide new targets for therapeutic intervention in future studies.

2.
Brain Behav ; 10(4): e01580, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32097542

RESUMEN

BACKGROUND: A great extent of knowledge on peripheral nerve regeneration has been gathered using the rat sciatic nerve model. The femoral nerve model of the rat offers an interesting alternative, as it lacks disadvantageous features such as automutilation. For the analysis of locomotor behavior in rats after sciatic nerve injury, the CatWalk™ XT Gait Analysis System is often used. However, lesions of the femoral nerve in the rat have yet remained unstudied with this method. MATERIAL AND METHODS: Ten male Sprague Dawley rats were evaluated with the CatWalk XT to study their gait after a 6-mm resection of the right femoral nerve and reconstruction with an autologous nerve graft. Animals were observed for 10 weeks after surgery. RESULTS: Print Area, Print Length, Swing Speed, and Duty Cycle decreased to a minimum of 40% of baseline 2 weeks after surgery. Swing Time was elevated more than twofold at this time point. However, all these parameters recovered back to >90% of baseline values at 10 weeks after surgery. This degree of functional recovery has not been reported after sciatic nerve resection and autograft repair. Base of support varied minimally postoperatively in contrast to a strong decrement after sciatic nerve resection and repair. CONCLUSION: We hereby provide a comprehensive in-depth analysis of how to study functional recovery after injury of the femoral nerve in the rat via the CatWalk XT. We place special emphasis on highlighting the differences between the femoral nerve and sciatic nerve injury model in this context.


Asunto(s)
Nervio Femoral/fisiopatología , Locomoción/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Recuperación de la Función/fisiología , Animales , Autoinjertos/fisiopatología , Nervio Femoral/lesiones , Marcha/fisiología , Masculino , Transferencia de Nervios/métodos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...