Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
2.
bioRxiv ; 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36909619

Reduced responsiveness of precursor B-acute lymphoblastic leukemia (BCP-ALL) to chemotherapy can be inferred when leukemia cells persist after 28 days of initial treatment. Survival of these long-term persister (LTP) / minimal residual disease (MRD) cells is partly due to bone marrow stromal cells that protect them under conditions of chemotherapy stress. We used RNA-seq to analyse BCP-ALL cells that survived a long-term, 30-day vincristine chemotherapy treatment while in co-culture with bone marrow stromal cells. RNAs of as many as 10% of the protein-encoding genes were differentially expressed. There was substantial overlap with genes associated with MRD cell persistence reported in other studies. The top pathway regulated in the LTP cells was that involving p53, a master regulator of a spectrum of responses relevant to drug resistance and cytotoxic drug exposure including control of autophagy. We tested a select number of genes for contribution to BCP-ALL cell survival using Cas9/CRISPR in a 2-step selection, initially for overall effect on cell fitness, followed by 21 days of exposure to vincristine. Many genes involved in autophagy and lysosomal function were found to contribute to survival both at steady-state and during drug treatment. We also identified MYH9, NCSTN and KIAA2013 as specific genes contributing to fitness of BCP-ALL cells. CD44 was not essential for growth under steady state conditions but was needed for survival of vincristine treatment. Finally, although the drug transporter ABCC1/MRP1 is not overexpressed in BCP-ALL, a functional gene was needed for DTP cells to survive treatment with vincristine. This suggests that addition of possible ABCC1 inhibitors during induction therapy could provide benefit in eradication of minimal residual disease in patients treated with a chemotherapy regimen that includes vincristine.

3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36430839

Acute lymphoblastic leukemias arising from the malignant transformation of B-cell precursors (BCP-ALLs) are protected against chemotherapy by both intrinsic factors as well as by interactions with bone marrow stromal cells. Galectin-1 and Galectin-3 are lectins with overlapping specificity for binding polyLacNAc glycans. Both are expressed by bone marrow stromal cells and by hematopoietic cells but show different patterns of expression, with Galectin-3 dynamically regulated by extrinsic factors such as chemotherapy. In a comparison of Galectin-1 x Galectin-3 double null mutant to wild-type murine BCP-ALL cells, we found reduced migration, inhibition of proliferation, and increased sensitivity to drug treatment in the double knockout cells. Plant-derived carbohydrates GM-CT-01 and GR-MD-02 were used to inhibit extracellular Galectin-1/-3 binding to BCP-ALL cells in co-culture with stromal cells. Treatment with these compounds attenuated migration of the BCP-ALL cells to stromal cells and sensitized human BCP-ALL cells to vincristine and the targeted tyrosine kinase inhibitor nilotinib. Because N-glycan sialylation catalyzed by the enzyme ST6Gal1 can regulate Galectin cell-surface binding, we also compared the ability of BCP-ALL wild-type and ST6Gal1 knockdown cells to resist vincristine treatment when they were co-cultured with Galectin-1 or Galectin-3 knockout stromal cells. Consistent with previous results, stromal Galectin-3 was important for maintaining BCP-ALL fitness during chemotherapy exposure. In contrast, stromal Galectin-1 did not significantly contribute to drug resistance, and there was no clear effect of ST6Gal1-catalysed N-glycan sialylation. Taken together, our results indicate a complicated joint contribution of Galectin-1 and Galectin-3 to BCP-ALL survival, with different roles for endogenous and stromal produced Galectins. These data indicate it will be important to efficiently block both extracellular and intracellular Galectin-1 and Galectin-3 with the goal of reducing BCP-ALL persistence in the protective bone marrow niche during chemotherapy.


Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Galectin 1/genetics , Galectin 1/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Vincristine , Galectins/metabolism , Polysaccharides/metabolism
4.
Biophys J ; 121(22): 4342-4357, 2022 11 15.
Article En | MEDLINE | ID: mdl-36209362

Intrinsically disordered regions (IDRs) are common and important functional domains in many proteins. However, IDRs are difficult to target for drug development due to the lack of defined structures that would facilitate the identification of possible drug-binding pockets. Galectin-3 is a carbohydrate-binding protein of which overexpression has been implicated in a wide variety of disorders, including cancer and inflammation. Apart from its carbohydrate-recognition/binding domain (CRD), Galectin-3 also contains a functionally important disordered N-terminal domain (NTD) that contacts the C-terminal domain (CTD) and could be a target for drug development. To overcome challenges involved in inhibitor design due to lack of structure and the highly dynamic nature of the NTD, we used a protocol combining nuclear magnetic resonance data from recombinant Galectin-3 with accelerated molecular dynamics (MD) simulations. This approach identified a pocket in the CTD with which the NTD makes frequent contact. In accordance with this model, mutation of residues L131 and L203 in this pocket caused loss of Galectin-3 agglutination ability, signifying the functional relevance of the cavity. In silico screening was used to design candidate inhibitory peptides targeting the newly discovered cavity, and experimental testing of only three of these yielded one peptide that inhibits the agglutination promoted by wild-type Galectin-3. NMR experiments further confirmed that this peptide indeed binds to a cavity in the CTD, not within the actual CRD. Our results show that it is possible to apply a combination of MD simulations and NMR experiments to precisely predict the binding interface of a disordered domain with a structured domain, and furthermore use this predicted interface for designing inhibitors. This procedure can potentially be extended to many other targets in which similar IDR interactions play a vital functional role.


Galectin 3 , Molecular Dynamics Simulation , Galectin 3/genetics , Galectin 3/chemistry , Galectin 3/metabolism , Magnetic Resonance Spectroscopy , Peptides/metabolism , Protein Binding
5.
Front Oncol ; 12: 828041, 2022.
Article En | MEDLINE | ID: mdl-35371997

Normal early human B-cell development from lymphoid progenitors in the bone marrow depends on instructions from elements in that microenvironment that include stromal cells and factors secreted by these cells including the extracellular matrix. Glycosylation is thought to play a key role in such interactions. The sialyltransferase ST6Gal1, with high expression in specific hematopoietic cell types, is the only enzyme thought to catalyze the terminal addition of sialic acids in an α2-6-linkage to galactose on N-glycans in such cells. Expression of ST6Gal1 increases as B cells undergo normal B-lineage differentiation. B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) with differentiation arrest at various stages of early B-cell development have widely different expression levels of ST6GAL1 at diagnosis, with high ST6Gal1 in some but not in other relapses. We analyzed the consequences of increasing ST6Gal1 expression in a diagnosis sample using lentiviral transduction. NSG mice transplanted with these BCP-ALL cells were monitored for survival. Compared to mice transplanted with leukemia cells expressing original ST6Gal1 levels, increased ST6Gal1 expression was associated with significantly reduced survival. A cohort of mice was also treated for 7 weeks with vincristine chemotherapy to induce remission and then allowed to relapse. Upon vincristine discontinuation, relapse was detected in both groups, but mice transplanted with ST6Gal1 overexpressing BCP-ALL cells had an increased leukemia burden and shorter survival than controls. The BCP-ALL cells with higher ST6Gal1 were more resistant to long-term vincristine treatment in an ex vivo tissue co-culture model with OP9 bone marrow stromal cells. Gene expression analysis using RNA-seq showed a surprisingly large number of genes with significantly differential expression, of which approximately 60% increased mRNAs, in the ST6Gal1 overexpressing BCP-ALL cells. Pathways significantly downregulated included those involved in immune cell migration. However, ST6Gal1 knockdown cells also showed increased insensitivity to chemotherapy. Our combined results point to a context-dependent effect of ST6Gal1 expression on BCP-ALL cells, which is discussed within the framework of its activity as an enzyme with many N-linked glycoprotein substrates.

6.
J Med Chem ; 65(8): 5975-5989, 2022 04 28.
Article En | MEDLINE | ID: mdl-35427125

Galectin-3 is a ß-galactoside-specific, carbohydrate-recognizing protein (lectin) that is strongly implicated in cancer development, metastasis, and drug resistance. Galectin-3 promotes migration and ability to withstand drug treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Due to high amino acid conservation among galectins and the shallow nature of their glycan-binding site, the design of selective potent antagonists targeting galectin-3 is challenging. Herein, we report the design and synthesis of novel taloside-based antagonists of galectin-3 with enhanced affinity and selectivity. The molecules were optimized by in silico docking, selectivity was established against four galectins, and the binding modes were confirmed by elucidation of X-ray crystal structures. Critically, the specific inhibition of galectin-3-induced BCP-ALL cell agglutination was demonstrated. The compounds decreased the viability of ALL cells even when grown in the presence of protective stromal cells. We conclude that these compounds are promising leads for therapeutics, targeting the tumor-supportive activities of galectin-3 in cancer.


Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Drug Design , Galectin 3/antagonists & inhibitors , Galectin 3/metabolism , Humans , Polysaccharides/chemical synthesis , Polysaccharides/chemistry , Polysaccharides/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article En | MEDLINE | ID: mdl-34830047

Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.


Galectin 3/antagonists & inhibitors , Galectin 3/metabolism , Mesenchymal Stem Cells/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Cycle/drug effects , Cell Line , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Galectin 3/genetics , Humans , Mesenchymal Stem Cells/drug effects , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Vincristine/pharmacology
8.
Theranostics ; 11(19): 9519-9537, 2021.
Article En | MEDLINE | ID: mdl-34646384

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with mixed-lineage leukemia gene rearrangement (MLL-r) is a poor-prognosis subtype for which additional therapeutic targets are urgently needed. Currently no multi-omics data set for primary MLL r patient cells exists that integrates transcriptomics, proteomics and glycomics to gain an inclusive picture of theranostic targets. Methods: We have integrated transcriptomics, proteomics and glycomics to i) obtain the first inclusive picture of primary patient BCP-ALL cells and identify molecular signatures that distinguish leukemic from normal precursor B-cells and ii) better understand the benefits and limitations of the applied technologies to deliver deep molecular sequence data across major cellular biopolymers. Results: MLL-r cells feature an extensive remodeling of their glycocalyx, with increased levels of Core 2-type O-glycans and complex N-glycans as well as significant changes in sialylation and fucosylation. Notably, glycosaminoglycan remodeling from chondroitin sulfate to heparan sulfate was observed. A survival screen, to determine if glycan remodeling enzymes are redundant, identified MGAT1 and NGLY1, essential components of the N-glycosylation/degradation pathway, as highly relevant within this in vitro screening. OGT and OGA, unique enzymes that regulate intracellular O-GlcNAcylation, were also indispensable. Transcriptomics and proteomics further identified Fes and GALNT7-mediated glycosylation as possible therapeutic targets. While there is overall good correlation between transcriptomics and proteomics data, we demonstrate that a systematic combined multi-omics approach delivers important diagnostic information that is missed when applying a single omics technology. Conclusions: Apart from confirming well-known MLL-r BCP-ALL glycoprotein markers, our integrated multi-omics workflow discovered previously unidentified diagnostic/therapeutic protein targets.


Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Line, Tumor , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Leukemic/genetics , Gene Rearrangement/genetics , Glycomics/methods , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/metabolism , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proteomics/methods , Transcriptome/genetics
9.
PLoS One ; 16(9): e0258140, 2021.
Article En | MEDLINE | ID: mdl-34591931

The bone marrow is a frequent location of primary relapse after conventional cytotoxic drug treatment of human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Because stromal cells have a major role in promoting chemotherapy resistance, they should be included to more realistically model in vitro drug treatment. Here we validated a novel application of the xCELLigence system as a continuous co-culture to assess long-term effects of drug treatment on BCP-ALL cells. We found that bone marrow OP9 stromal cells adhere to the electrodes but are progressively displaced by dividing patient-derived BCP-ALL cells, resulting in reduction of impedance over time. Death of BCP-ALL cells due to drug treatment results in re-adherence of the stromal cells to the electrodes, increasing impedance. Importantly, vincristine inhibited proliferation of sensitive BCP-ALL cells in a dose-dependent manner, correlating with increased impedance. This system was able to discriminate sensitivity of two relapsed Philadelphia chromosome (Ph) positive ALLs to four different targeted kinase inhibitors. Moreover, differences in sensitivity of two CRLF2-drivenBCP-ALL cell lines to ruxolitinib were also seen. These results show that impedance can be used as a novel approach to monitor drug treatment and sensitivity of primary BCP-ALL cells in the presence of protective microenvironmental cells.


Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Electric Impedance , Humans , Imidazoles/pharmacology , Mice , Piperazines/pharmacology , Pyridazines/pharmacology , Pyrimidines/pharmacology , Vincristine/pharmacology
10.
Mol Cell ; 81(10): 2094-2111.e9, 2021 05 20.
Article En | MEDLINE | ID: mdl-33878293

Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.


Autoimmunity , Neoplasms/enzymology , Neoplasms/prevention & control , Syk Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Antigens, CD19/metabolism , B-Lymphocytes , Calcium/metabolism , Cell Differentiation , Cell Transformation, Neoplastic , Enzyme Activation , Humans , Immune Tolerance , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/pathology , Mice , Models, Genetic , NFATC Transcription Factors/metabolism , Neoplasm Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
11.
Leukemia ; 35(1): 75-89, 2021 01.
Article En | MEDLINE | ID: mdl-32205861

Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(-) disease. We report that CD19(-) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(-) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(-) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.


Antigens, CD19/immunology , Immunotherapy, Adoptive , Leukemia, B-Cell/immunology , Leukemia, B-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antigens, CD19/chemistry , Antigens, Neoplasm , Biomarkers , Cell Line, Tumor , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Gene Expression , Humans , Immunotherapy, Adoptive/methods , Leukemia, B-Cell/genetics , Leukemia, B-Cell/therapy , Mice, Transgenic , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Structure-Activity Relationship , Transduction, Genetic , Transgenes , Treatment Outcome , Xenograft Model Antitumor Assays
12.
Blood ; 136(2): 210-223, 2020 07 09.
Article En | MEDLINE | ID: mdl-32219444

Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Drug Resistance, Neoplasm , Gene Deletion , Integrin alpha6 , Neoplasm Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Pyrimidines/pharmacology , Animals , Antibodies, Neoplasm/pharmacology , Antibodies, Neutralizing/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Integrin alpha6/genetics , Integrin alpha6/metabolism , Male , Mice , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
13.
Sci Rep ; 8(1): 17174, 2018 11 21.
Article En | MEDLINE | ID: mdl-30464179

Precursor B acute lymphoblastic leukemias (pre-B ALLs) abnormally express a specific glycan structure, 9-O-acetylated sialic acid (9-O-Ac-Sia), on their cell surface, but glycoproteins that carry this modification have not been identified. Using three different lectins that specifically recognize this structure, we establish that nucleolin (NCL), a protein implicated in cancer, contains 9-O-Ac-Sia. Surprisingly, antibodies against the glycolipid 9-O-Ac-Sia GD3 also detected 9-O-Ac-Sia NCL. NCL is present on the surface of pre-B ALL cells as a sialoglycoprotein that is partly 9-O-acetylated and conversely, 9-O-Ac-Sia-containing structures other than NCL are present on these cells as well. Interestingly, NCL and the 9-O-Ac-Sia signal had less co-localization on normal pre-B cells. We also investigated regulation of NCL on the cell surface and found that sialidase treatment increased the percentage of cells positive for cell surface NCL, suggesting that sialylation of NCL promotes internalization. Treatment of pre-B ALL cells with the chemotherapy drug vincristine also increased the percentage of cells with surface NCL and correlated with increased 9-O-Ac-Sia expression. All tested leukemia cells including primary samples expressed NCL, suggesting it as a possible therapeutic target. We confirmed this by showing inhibition of cell proliferation in some pre-B ALLs by exposure to a NCL-specific aptamer AS1411.


Membrane Proteins/analysis , Phosphoproteins/analysis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/chemistry , RNA-Binding Proteins/analysis , Sialoglycoproteins/analysis , Cells, Cultured , Humans , Nucleolin
14.
J Exp Clin Cancer Res ; 37(1): 67, 2018 Mar 27.
Article En | MEDLINE | ID: mdl-29580262

BACKGROUND: Drug resistance of B-cell precursor acute lymphoblastic leukemia (BP-ALL) cells is conferred by both intrinsic and extrinsic factors, which could be targeted to promote chemo-sensitization. Our previous studies showed that Galectin-3, a lectin that clusters galactose-modified glycoproteins and that has both an intracellular and extracellular location, protects different subtypes of BP-ALL cells against chemotherapy. Galectin-1 is related to Galectin-3 and its expression was previously reported to be restricted to the MLL subtype of BP-ALL. METHODS AND RESULTS: Here, we report that Galectin-1 is expressed at different levels in and on different subclasses of BP-ALLs. Bone marrow plasma also contains high levels of Galectin-1. PTX008 is an allosteric inhibitor which inhibits Galectin-1 but not Galectin-3-mediated agglutination. The compound reduces migration of BP-ALL cells to CXCL12 and OP9 stromal cells and inhibits fibronectin-mediated adhesion. It also affects cell cycle progression of BCP-ALL cells. PTX008 is cytostatic for BP-ALL cells even when these are co-cultured with protective stroma, and can sensitize ALL cells to vincristine chemotherapy in vitro and in mice. CONCLUSIONS: PTX008 inhibits multiple functions that contribute to BP-ALL survival. The effects of Galectin-1 inhibition on both BP-ALL cell proliferation and migration suggest both the leukemia cells as well as the microenvironment that protects these cells may be targeted.


Antineoplastic Agents/pharmacology , Galectin 1/antagonists & inhibitors , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Adhesion/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Disease Models, Animal , Galectin 1/genetics , Galectin 1/metabolism , Gene Expression , Humans , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding , Xenograft Model Antitumor Assays
15.
Cancers (Basel) ; 9(9)2017 Sep 10.
Article En | MEDLINE | ID: mdl-28891959

The quest continues for targeted therapies to reduce the morbidity of chemotherapy and to improve the response of resistant leukemia. Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stromal cells triggers intracellular signals that promote cell-adhesion-mediated drug resistance (CAM-DR). Idelalisib, an U.S. Food and Drug Administration (FDA)-approved PI3Kδ-specific inhibitor has been shown to be effective in CLL in down-regulating p-Akt and prolonging survival in combination with Rituximab; herein we explore the possibility of its use in B ALL and probe the mechanism of action. Primary B ALL in contact with OP9 stromal cells showed increased p-Aktser473. Idelalisib decreased p-Akt in patient samples of ALL with diverse genetic lesions. Addition of idelalisib to vincristine inhibited proliferation when compared to vincristine monotherapy in a subset of samples tested. Idelalisib inhibited ALL migration to SDF-1α in vitro and blocked homing of ALL cells to the bone marrow in vivo. This report tests PI3Kδ inhibitors in a more diverse group of ALL than has been previously reported and is the first published report of idelalisib inhibiting homing of ALL cells to bone marrow. Our data support further pre-clinical evaluation of idelalisib for the therapy of B ALL.

16.
Oncotarget ; 7(45): 73147-73159, 2016 Nov 08.
Article En | MEDLINE | ID: mdl-27705905

Adipocytes promote cancer progression and impair treatment, and have been shown to protect acute lymphoblastic leukemia (ALL) cells from chemotherapies. Here we investigate whether this protection is mediated by changes in oxidative stress. Co-culture experiments showed that adipocytes protect ALL cells from oxidative stress induced by drugs or irradiation. We demonstrated that ALL cells induce intracellular ROS and an oxidative stress response in adipocytes. This adipocyte oxidative stress response leads to the secretion of soluble factors which protect ALL cells from daunorubicin (DNR). Collectively, our investigation shows that ALL cells elicit an oxidative stress response in adipocytes, leading to adipocyte protection of ALL cells against DNR.


Adipocytes/metabolism , Antibiotics, Antineoplastic/pharmacology , Daunorubicin/pharmacology , Drug Resistance, Neoplasm , Leukemia/metabolism , Oxidative Stress , 3T3-L1 Cells , Animals , Antioxidants/pharmacology , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Glutathione/metabolism , Humans , Leukemia/drug therapy , Leukemia/genetics , Mice , Oxidative Stress/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Reactive Oxygen Species
17.
Blood ; 127(15): 1842-3, 2016 Apr 14.
Article En | MEDLINE | ID: mdl-27081094

In this issue of Blood, Lykken et al used an immunocompetent mouse model of B-cell lymphoma to discover an interesting new way in which these malignant cells can avoid being killed in the presence of anti-CD20 antibodies.


Genetic Carrier Screening , Muscular Dystrophies/genetics , Prenatal Diagnosis , Female , Humans , Male , Pregnancy
18.
PLoS One ; 10(9): e0137917, 2015.
Article En | MEDLINE | ID: mdl-26360058

Upstream mutations that lead to constitutive activation of Erk in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are relatively common. In the era of personalized medicine, flow cytometry could be used as a rapid method for selection of optimal therapies, which may include drugs that target the Erk pathway. Here, we evaluated the utility of phospho-flow, compared to Western blotting, to monitor Erk pathway activation and its inhibition by targeted Mek kinase inhibitors in human BCP ALL. Because the Erk pathway is not only activated endogenously, by mutations, but also by normal extracellular stimulation through stromal contact and serum growth factors, we compared Erk activation ex vivo in ALL cells in the presence and absence of stroma and serum. Phospho-flow was able to readily detect changes in the pool of pErk1/2 that had been generated by normal microenvironmental stimuli in patient-derived BCP-ALL cells passaged in NSG mice, in viably frozen primary patient samples, and in fresh patient samples. Treatment with the Mek1/2 inhibitor selumetinib resulted in a rapid, complete and persistent reduction of microenvironment-generated pErk1/2. Imaging flow cytometry confirmed reduction of nuclear pErk1/2 upon selumetinib treatment. An ALL relapsing with an activating KRasG12V mutation contained higher endogenous as well as serum/stromal-stimulated levels of pErk1/2 than the matched diagnosis sample which lacked the mutation, but selumetinib treatment reduced pErk1/2 to the same level in both samples. Selumetinib and trametinib as Mek inhibitors were mainly cytostatic, but combined treatment with the PI3K∂ inhibitor CAL101 increased cytotoxicity. Thus phospho-flow cytometry could be used as a platform for rapid, individualized in vitro drug sensitivity assessment for leukemia patients at the time of diagnosis.


Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Benzimidazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Activation , Flow Cytometry , Humans , MAP Kinase Signaling System/drug effects , Mice , Mutation , Phosphorylation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Stromal Cells/drug effects , Stromal Cells/metabolism
19.
Oncoimmunology ; 4(2): e984549, 2015 Feb.
Article En | MEDLINE | ID: mdl-25949882

B-precursor acute lymphoblastic leukemia (BP-ALL) patients are immunocompromised. We recently reported that functional natural killer (NK) cells can be grown from patient bone marrow and blood samples at diagnosis. Surprisingly, such NK cells exhibit cytotoxicity against autologous BP-ALL cells. Here, we outline unanswered questions, challenges and possible applications associated with these findings.

20.
Oncotarget ; 6(13): 11378-94, 2015 May 10.
Article En | MEDLINE | ID: mdl-25869099

The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma.


Galectin 3/metabolism , Paracrine Communication , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , Stromal Cells/metabolism , Active Transport, Cell Nucleus , Animals , Antineoplastic Agents/pharmacology , Blood Proteins , Cell Line, Tumor , Endocytosis , Exosomes/metabolism , Galectin 3/deficiency , Galectin 3/genetics , Galectins , Gene Expression Regulation, Leukemic , Humans , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Paracrine Communication/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Messenger/metabolism , Signal Transduction/drug effects , Stromal Cells/pathology , Time Factors , Transcription, Genetic , Transcriptional Activation , Transfection , Tumor Microenvironment
...