Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
Lancet Infect Dis ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38723650

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.

2.
bioRxiv ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38464202

Understanding the causal genetic architecture of complex phenotypes is essential for future research into disease mechanisms and potential therapies. Here, we present a novel framework for genome-wide detection of sets of variants that carry non-redundant information on the phenotypes and are therefore more likely to be causal in a biological sense. Crucially, our framework requires only summary statistics obtained from standard genome-wide marginal association testing. The described approach, implemented in open-source software, is also computationally efficient, requiring less than 15 minutes on a single CPU to perform genome-wide analysis. Through extensive genome-wide simulation studies, we show that the method can substantially outperform usual two-stage marginal association testing and fine-mapping procedures in precision and recall. In applications to a meta-analysis of ten large-scale genetic studies of Alzheimer's disease (AD), we identified 82 loci associated with AD, including 37 additional loci missed by conventional GWAS pipeline. The identified putative causal variants achieve state-of-the-art agreement with massively parallel reporter assays and CRISPR-Cas9 experiments. Additionally, we applied the method to a retrospective analysis of 67 large-scale GWAS summary statistics since 2013 for a variety of phenotypes. Results reveal the method's capacity to robustly discover additional loci for polygenic traits and pinpoint potential causal variants underpinning each locus beyond conventional GWAS pipeline, contributing to a deeper understanding of complex genetic architectures in post-GWAS analyses.

3.
Vaccine ; 42(9): 2181-2190, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38458870

A central goal of vaccine research is to characterize and validate immune correlates of protection (CoPs). In addition to helping elucidate immunological mechanisms, a CoP can serve as a valid surrogate endpoint for an infectious disease clinical outcome and thus qualifies as a primary endpoint for vaccine authorization or approval without requiring resource-intensive randomized, controlled phase 3 trials. Yet, it is challenging to persuasively validate a CoP, because a prognostic immune marker can fail as a reliable basis for predicting/inferring the level of vaccine efficacy against a clinical outcome, and because the statistical analysis of phase 3 trials only has limited capacity to disentangle association from cause. Moreover, the multitude of statistical methods garnered for CoP evaluation in phase 3 trials renders the comparison, interpretation, and synthesis of CoP results challenging. Toward promoting broader harmonization and standardization of CoP evaluation, this article summarizes four complementary statistical frameworks for evaluating CoPs in a phase 3 trial, focusing on the frameworks' distinct scientific objectives as measured and communicated by distinct causal vaccine efficacy parameters. Advantages and disadvantages of the frameworks are considered, dependent on phase 3 trial context, and perspectives are offered on how the frameworks can be applied and their results synthesized.


Vaccine Efficacy , Vaccines , Research Design , Biomarkers/analysis , Causality , Randomized Controlled Trials as Topic
4.
Lifetime Data Anal ; 30(1): 213-236, 2024 Jan.
Article En | MEDLINE | ID: mdl-37620504

Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, ordinal, or continuous treatments measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to a competing event that precludes observation of the event of interest. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as [Formula: see text]-consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID-19 hospitalized patients, where death by other causes is taken to be the competing event.


Models, Statistical , Survival Analysis , Humans , Computer Simulation , Longitudinal Studies , Regression Analysis
5.
medRxiv ; 2023 Nov 23.
Article En | MEDLINE | ID: mdl-38045387

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

7.
Int J Infect Dis ; 137: 28-39, 2023 Dec.
Article En | MEDLINE | ID: mdl-37820782

BACKGROUND: Stochastic interventional vaccine efficacy (SVE) analysis is a new approach to correlate of protection (CoP) analysis of a phase III trial that estimates how vaccine efficacy (VE) would change under hypothetical shifts of an immune marker. METHODS: We applied nonparametric SVE methodology to the COVE trial of messenger RNA-1273 vs placebo to evaluate post-dose 2 pseudovirus neutralizing antibody (nAb) titer against the D614G strain as a CoP against COVID-19. Secondly, we evaluated the ability of these results to predict VE against variants based on shifts of geometric mean titers to variants vs D614G. Prediction accuracy was evaluated by 13 validation studies, including 12 test-negative designs. RESULTS: SVE analysis of COVE supported post-dose 2 D614G titer as a CoP: estimated VE ranged from 66.9% (95% confidence interval: 36.2, 82.8%) to 99.3% (99.1, 99.4%) at 10-fold decreased or increased titer shifts, respectively. The SVE estimates only weakly predicted variant-specific VE estimates (concordance correlation coefficient 0.062 for post 2-dose VE). CONCLUSION: SVE analysis of COVE supports nAb titer as a CoP for messenger RNA vaccines. Predicting variant-specific VE proved difficult due to many limitations. Greater anti-Omicron titers may be needed for high-level protection against Omicron vs anti-D614G titers needed for high-level protection against pre-Omicron COVID-19.


COVID-19 , Vaccines , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , RNA, Messenger/genetics
10.
Viruses ; 15(10)2023 09 29.
Article En | MEDLINE | ID: mdl-37896806

The COVE trial randomized participants to receive two doses of mRNA-1273 vaccine or placebo on Days 1 and 29 (D1, D29). Anti-SARS-CoV-2 Spike IgG binding antibodies (bAbs), anti-receptor binding domain IgG bAbs, 50% inhibitory dilution neutralizing antibody (nAb) titers, and 80% inhibitory dilution nAb titers were measured at D29 and D57. We assessed these markers as correlates of protection (CoPs) against COVID-19 using stochastic interventional vaccine efficacy (SVE) analysis and principal surrogate (PS) analysis, frameworks not used in our previous COVE immune correlates analyses. By SVE analysis, hypothetical shifts of the D57 Spike IgG distribution from a geometric mean concentration (GMC) of 2737 binding antibody units (BAU)/mL (estimated vaccine efficacy (VE): 92.9% (95% CI: 91.7%, 93.9%)) to 274 BAU/mL or to 27,368 BAU/mL resulted in an overall estimated VE of 84.2% (79.0%, 88.1%) and 97.6% (97.4%, 97.7%), respectively. By binary marker PS analysis of Low and High subgroups (cut-point: 2094 BAU/mL), the ignorance interval (IGI) and estimated uncertainty interval (EUI) for VE were [85%, 90%] and (78%, 93%) for Low compared to [95%, 96%] and (92%, 97%) for High. By continuous marker PS analysis, the IGI and 95% EUI for VE at the 2.5th percentile (519.4 BAU/mL) vs. at the 97.5th percentile (9262.9 BAU/mL) of D57 Spike IgG concentration were [92.6%, 93.4%] and (89.2%, 95.7%) vs. [94.3%, 94.6%] and (89.7%, 97.0%). Results were similar for other D29 and D57 markers. Thus, the SVE and PS analyses additionally support all four markers at both time points as CoPs.


2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Immunoglobulin G , Vaccine Efficacy
11.
Nature ; 621(7979): 558-567, 2023 Sep.
Article En | MEDLINE | ID: mdl-37704720

Sustainable Development Goal 2.2-to end malnutrition by 2030-includes the elimination of child wasting, defined as a weight-for-length z-score that is more than two standard deviations below the median of the World Health Organization standards for child growth1. Prevailing methods to measure wasting rely on cross-sectional surveys that cannot measure onset, recovery and persistence-key features that inform preventive interventions and estimates of disease burden. Here we analyse 21 longitudinal cohorts and show that wasting is a highly dynamic process of onset and recovery, with incidence peaking between birth and 3 months. Many more children experience an episode of wasting at some point during their first 24 months than prevalent cases at a single point in time suggest. For example, at the age of 24 months, 5.6% of children were wasted, but by the same age (24 months), 29.2% of children had experienced at least one wasting episode and 10.0% had experienced two or more episodes. Children who were wasted before the age of 6 months had a faster recovery and shorter episodes than did children who were wasted at older ages; however, early wasting increased the risk of later growth faltering, including concurrent wasting and stunting (low length-for-age z-score), and thus increased the risk of mortality. In diverse populations with high seasonal rainfall, the population average weight-for-length z-score varied substantially (more than 0.5 z in some cohorts), with the lowest mean z-scores occurring during the rainiest months; this indicates that seasonally targeted interventions could be considered. Our results show the importance of establishing interventions to prevent wasting from birth to the age of 6 months, probably through improved maternal nutrition, to complement current programmes that focus on children aged 6-59 months.


Cachexia , Developing Countries , Growth Disorders , Malnutrition , Child, Preschool , Humans , Infant , Infant, Newborn , Cachexia/epidemiology , Cachexia/mortality , Cachexia/prevention & control , Cross-Sectional Studies , Growth Disorders/epidemiology , Growth Disorders/mortality , Growth Disorders/prevention & control , Incidence , Longitudinal Studies , Malnutrition/epidemiology , Malnutrition/mortality , Malnutrition/prevention & control , Rain , Seasons
12.
Nature ; 621(7979): 550-557, 2023 Sep.
Article En | MEDLINE | ID: mdl-37704719

Globally, 149 million children under 5 years of age are estimated to be stunted (length more than 2 standard deviations below international growth standards)1,2. Stunting, a form of linear growth faltering, increases the risk of illness, impaired cognitive development and mortality. Global stunting estimates rely on cross-sectional surveys, which cannot provide direct information about the timing of onset or persistence of growth faltering-a key consideration for defining critical windows to deliver preventive interventions. Here we completed a pooled analysis of longitudinal studies in low- and middle-income countries (n = 32 cohorts, 52,640 children, ages 0-24 months), allowing us to identify the typical age of onset of linear growth faltering and to investigate recurrent faltering in early life. The highest incidence of stunting onset occurred from birth to the age of 3 months, with substantially higher stunting at birth in South Asia. From 0 to 15 months, stunting reversal was rare; children who reversed their stunting status frequently relapsed, and relapse rates were substantially higher among children born stunted. Early onset and low reversal rates suggest that improving children's linear growth will require life course interventions for women of childbearing age and a greater emphasis on interventions for children under 6 months of age.


Developing Countries , Growth Disorders , Adult , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Asia, Southern/epidemiology , Cognition , Cross-Sectional Studies , Developing Countries/statistics & numerical data , Developmental Disabilities/epidemiology , Developmental Disabilities/mortality , Developmental Disabilities/prevention & control , Growth Disorders/epidemiology , Growth Disorders/mortality , Growth Disorders/prevention & control , Longitudinal Studies , Mothers
13.
Nature ; 621(7979): 568-576, 2023 Sep.
Article En | MEDLINE | ID: mdl-37704722

Growth faltering in children (low length for age or low weight for length) during the first 1,000 days of life (from conception to 2 years of age) influences short-term and long-term health and survival1,2. Interventions such as nutritional supplementation during pregnancy and the postnatal period could help prevent growth faltering, but programmatic action has been insufficient to eliminate the high burden of stunting and wasting in low- and middle-income countries. Identification of age windows and population subgroups on which to focus will benefit future preventive efforts. Here we use a population intervention effects analysis of 33 longitudinal cohorts (83,671 children, 662,763 measurements) and 30 separate exposures to show that improving maternal anthropometry and child condition at birth accounted for population increases in length-for-age z-scores of up to 0.40 and weight-for-length z-scores of up to 0.15 by 24 months of age. Boys had consistently higher risk of all forms of growth faltering than girls. Early postnatal growth faltering predisposed children to subsequent and persistent growth faltering. Children with multiple growth deficits exhibited higher mortality rates from birth to 2 years of age than children without growth deficits (hazard ratios 1.9 to 8.7). The importance of prenatal causes and severe consequences for children who experienced early growth faltering support a focus on pre-conception and pregnancy as a key opportunity for new preventive interventions.


Cachexia , Developing Countries , Growth Disorders , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Cachexia/economics , Cachexia/epidemiology , Cachexia/etiology , Cachexia/prevention & control , Cohort Studies , Developing Countries/economics , Developing Countries/statistics & numerical data , Dietary Supplements , Growth Disorders/epidemiology , Growth Disorders/prevention & control , Longitudinal Studies , Mothers , Sex Factors , Malnutrition/economics , Malnutrition/epidemiology , Malnutrition/etiology , Malnutrition/prevention & control , Anthropometry
14.
J Comput Graph Stat ; 32(2): 601-612, 2023.
Article En | MEDLINE | ID: mdl-37273839

The covariance matrix plays a fundamental role in many modern exploratory and inferential statistical procedures, including dimensionality reduction, hypothesis testing, and regression. In low-dimensional regimes, where the number of observations far exceeds the number of variables, the optimality of the sample covariance matrix as an estimator of this parameter is well-established. High-dimensional regimes do not admit such a convenience. Thus, a variety of estimators have been derived to overcome the shortcomings of the canonical estimator in such settings. Yet, selecting an optimal estimator from among the plethora available remains an open challenge. Using the framework of cross-validated loss-based estimation, we develop the theoretical underpinnings of just such an estimator selection procedure. We propose a general class of loss functions for covariance matrix estimation and establish accompanying finite-sample risk bounds and conditions for the asymptotic optimality of the cross-validation selector. In numerical experiments, we demonstrate the optimality of our proposed selector in moderate sample sizes and across diverse data-generating processes. The practical benefits of our procedure are highlighted in a dimension reduction application to single-cell transcriptome sequencing data.

15.
Sci Transl Med ; 15(692): eade9078, 2023 04 19.
Article En | MEDLINE | ID: mdl-37075127

The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.


2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , Vaccine Efficacy , COVID-19/prevention & control , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
16.
NPJ Vaccines ; 8(1): 36, 2023 Mar 11.
Article En | MEDLINE | ID: mdl-36899062

In the phase 3 trial of the AZD1222 (ChAdOx1 nCoV-19) vaccine conducted in the U.S., Chile, and Peru, anti-spike binding IgG concentration (spike IgG) and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured four weeks after two doses were assessed as correlates of risk and protection against PCR-confirmed symptomatic SARS-CoV-2 infection (COVID-19). These analyses of SARS-CoV-2 negative participants were based on case-cohort sampling of vaccine recipients (33 COVID-19 cases by 4 months post dose two, 463 non-cases). The adjusted hazard ratio of COVID-19 was 0.32 (95% CI: 0.14, 0.76) per 10-fold increase in spike IgG concentration and 0.28 (0.10, 0.77) per 10-fold increase in nAb ID50 titer. At nAb ID50 below the limit of detection (< 2.612 IU50/ml), 10, 100, and 270 IU50/ml, vaccine efficacy was -5.8% (-651%, 75.6%), 64.9% (56.4%, 86.9%), 90.0% (55.8%, 97.6%) and 94.2% (69.4%, 99.1%). These findings provide further evidence towards defining an immune marker correlate of protection to help guide regulatory/approval decisions for COVID-19 vaccines.

18.
Nat Commun ; 14(1): 331, 2023 01 19.
Article En | MEDLINE | ID: mdl-36658109

In the PREVENT-19 phase 3 trial of the NVX-CoV2373 vaccine (NCT04611802), anti-spike binding IgG concentration (spike IgG), anti-RBD binding IgG concentration (RBD IgG), and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured two weeks post-dose two are assessed as correlates of risk and as correlates of protection against COVID-19. Analyses are conducted in the U.S. cohort of baseline SARS-CoV-2 negative per-protocol participants using a case-cohort design that measures the markers from all 12 vaccine recipient breakthrough COVID-19 cases starting 7 days post antibody measurement and from 639 vaccine recipient non-cases. All markers are inversely associated with COVID-19 risk and directly associated with vaccine efficacy. In vaccine recipients with nAb ID50 titers of 50, 100, and 7230 international units (IU50)/ml, vaccine efficacy estimates are 75.7% (49.8%, 93.2%), 81.7% (66.3%, 93.2%), and 96.8% (88.3%, 99.3%). The results support potential cross-vaccine platform applications of these markers for guiding decisions about vaccine approval and use.


COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulin G , SARS-CoV-2 , Vaccine Efficacy , Clinical Trials, Phase III as Topic
19.
Biostatistics ; 24(3): 686-707, 2023 Jul 14.
Article En | MEDLINE | ID: mdl-35102366

Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary exposures and static interventions and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by exposure. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the exposure and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether an exposure is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by exposure. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open-source software, the $\texttt{medshift}$$\texttt{R}$ package, implementing the proposed methodology. Application of our (in)direct effects and their nonparametric estimators is illustrated using data from a comparative effectiveness trial examining the direct and indirect effects of pharmacological therapeutics on relapse to opioid use disorder.


Mediation Analysis , Models, Statistical , Humans , Models, Theoretical , Causality
20.
Biometrics ; 79(2): 1029-1041, 2023 06.
Article En | MEDLINE | ID: mdl-35839293

Inverse-probability-weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of interest by constructing a pseudopopulation in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse-probability-weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at nearly n - 1 / 3 $ n^{-1/3}$ -rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse-probability-weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.


Models, Statistical , Probability , Computer Simulation , Selection Bias , Causality
...