Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916923

RESUMEN

Yellow Dwarf Viruses (YDV) spread by aphids are some of the most economically important barley (Hordeum vulgare L.) virus-vector complexes worldwide. Detection and control of these viruses are critical components in the production of barley, wheat, and numerous other grasses of agricultural importance. Genetic control of plant diseases is often preferable to chemical control to reduce the epidemiological, environmental, and economic cost of foliar insecticides. Accordingly, the objectives of this work were to I) screen a barley population for resistance to YDV under natural infection using phenotypic assessment of disease symptoms, II) implement drone imagery to further assess resistance and test its utility as a disease screening tool, III) identify the prevailing virus and vector types in the experimental environment, and IV) perform a genome-wide association study to identify genomic regions associated with measured traits. Significant genetic differences were found in a population of 192 barley inbred lines regarding their YDV symptom severity and symptoms were moderately to highly correlated with grain yield. The severity of YDV measured with aerial imaging was highly correlated with on-the-ground estimates (r=0.65). Three aphid species vectoring three YDV species were identified with no apparent genotypic influence on their distribution. A QTL impacting YDV resistance was detected on chromosome 2H, albeit undetected using aerial imaging. However, QTL for canopy cover and mean NDVI were successfully mapped using the drone. This work provides a framework for utilizing drone imagery in future resistance breeding efforts for YDV in cereals and grasses, and in other virus-vector disease complexes.

2.
Phytopathology ; 110(5): 1082-1092, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32023173

RESUMEN

Stripe rust (incited by Puccinia striiformis f. sp. hordei) and stem rust (incited by P. graminis f. sp. tritici) are two of the most important diseases affecting barley. Building on prior work involving the introgression of the resistance genes rpg4/Rpg5 into diverse genetic backgrounds and the discovery of additional quantitative trait locus (QTLs) for stem rust resistance, we generated an array of germplasm in which we mapped resistance to stripe rust and stem rust. Stem rust races TTKSK and QCCJB were used for resistance mapping at the seedling and adult plant stages, respectively. Resistance to stripe rust, at the adult plant stage, was determined by QTLs on chromosomes 1H, 4H, and 5H that were previously reported in the literature. The rpg4/Rpg5 complex was validated as a source of resistance to stem rust at the seedling stage. Some parental germplasm, selected as potentially resistant to stem rust or susceptible but having other positive attributes, showed resistance at the seedling stage, which appears to be allelic to rpg4/Rpg5. The rpg4/Rpg5 complex, and this new allele, were not sufficient for adult plant resistance to stem rust in one environment. A QTL on 5H, distinct from Rpg5 and a previously reported resistance QTL, was required for resistance at the adult plant stage in all environments. This QTL is coincident with the QTL for stripe rust resistance. Germplasm with mapped genes/QTLs conferring resistance to stripe and stem rust was identified and is available as a resource to the research and breeding communities.


Asunto(s)
Basidiomycota , Hordeum , Mapeo Cromosómico , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Enfermedades de las Plantas
3.
Front Plant Sci ; 11: 585927, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469459

RESUMEN

One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT-assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit.

4.
Plant Cell Environ ; 42(11): 3105-3120, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31272129

RESUMEN

Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.


Asunto(s)
Núcleo Celular/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hordeum/metabolismo , Temperatura , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Adaptación Fisiológica/efectos de la radiación , Núcleo Celular/efectos de la radiación , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Citoplasma , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Plastidios , Genotipo , Modelos Genéticos , Fenotipo , Fotosíntesis/efectos de la radiación , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
5.
Phytopathology ; 109(6): 1018-1028, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30714882

RESUMEN

Stem rust (incited by Puccinia graminis f. sp. tritici) is a devastating disease of wheat and barley in many production areas. The widely virulent African P. graminis f. sp. tritici race TTKSK is of particular concern, because most cultivars are susceptible. To prepare for the possible arrival of race TTKSK in North America, we crossed a range of barley germplasm-representing different growth habits and end uses-with donors of stem rust resistance genes Rpg1 and rpg4/Rpg5. The former confers resistance to prevalent races of P. graminis f. sp. tritici in North America, and the latter confers resistance to TTKSK and other closely related races from Africa. We produced doubled haploids from these crosses and determined their allele type at the Rpg loci and haplotype at 7,864 single-nucleotide polymorphism loci. The doubled haploids were phenotyped for TTKSK resistance at the seedling stage. Integration of genotype and phenotype data revealed that (i) Rpg1 was not associated with TTKSK resistance, (ii) rpg4/Rpg5 was necessary but was not sufficient for resistance, and (iii) specific haplotypes at two quantitative trait loci were required for rpg4/Rpg5 to confer resistance to TTKSK. To confirm whether lines found resistant to TTKSK at the seedling resistance were also resistant at the adult plant stage, a subset of doubled haploids was evaluated in Kenya. Additionally, adult plant resistance to leaf rust and stripe rust (incited by Puccinia hordei and Puccinia striiformis f. sp. hordei, respectively) was also assessed on the doubled haploids in field trials at three locations in the United States over a 2-year period. Doubled haploids were identified with adult plant resistance to all three rusts, and this germplasm is available to the research and breeding communities.


Asunto(s)
Basidiomycota , Hordeum , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad , Kenia , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA