Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Dairy Sci ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38608947

Dietary methane (CH4) mitigation is in some cases associated with an increased hydrogen (H2) emission. The objective of the present study was to investigate the acute and short-term effects of acceptors for H2 (fumaric acid, acrylic acid or phloroglucinol) supplemented via pulse-dosing to dairy cows fed CH4 mitigating diets (using nitrate or 3-nitrooxypropanol), on gas exchange, rumen gas and VFA composition. For this purpose, 2 individual 4 × 4 Latin square experiments were conducted with 4 periods of 3 d (nitrate supplementation) and 7 d (3-nitrooxypropanol supplementation), respectively. In each study, 4 rumen cannulated Danish Holstein cows were used. Each additive for CH4 mitigation was included in the ad libitum fed diet within the 2 experiments, to which the cows were adapted for at least 14 d. Acceptors for H2 were administered twice daily in equal portions through the rumen fistula immediately after feeding of the individual cow. In Exp. 1 (nitrate), the treatments were CON-1 (no H2-acceptor), FUM-1 (fumaric acid), ACR-1 (acrylic acid) and FUM+ACR-1 (50% FUM-1 + 50% ACR-1). In Exp. 2 (3-nitrooxypropanol), the 3 treatments, CON-2, FUM-2, and ACR-2, were similar to CON-1, FUM-1 and ACR-1 treatments, however the fourth treatment was PHL-2 (phloroglucinol). Gas exchanges were measured in respiration chambers, while samples of rumen liquid and headspace gas were taken in time series relative to feeding and dosing on specific days. Headspace gas was analyzed for gas composition and rumen liquid was analyzed for volatile fatty acid composition and dissolved gas concentrations. Headspace gas composition and dissolved gas concentration were only measured in Exp. 2. Dry matter intake was reduced upon acrylic acid supplementation. There were no significant effects of any treatments in any experiments on H2 emission, except for a decrease in hourly H2 emission rate (g/h) at 1 h after feeding in both experiments. In Exp. 2, H2 headspace proportions increased by ACR-2 supplementation, whereas dissolved concentrations were unaffected. In Exp. 1, cows on ACR-1 increased propionate proportion at 1 h after feeding. In Exp. 2, both FUM-2 and ACR-2 increased rumen propionate proportion in the hours after feeding and dosing. There was no effect on rumen acetate for cows on PHL-2. There was a strong positive correlation between rumen dissolved CH4 and headspace CH4 (r = 0.84), whereas the equivalent correlation was weaker for H2 (r = 0.41). For the relationship between dissolved concentrations and emissions of CH4 and of H2, there was a moderate positive correlation for CH4 (r = 0.54), whereas it was weak for H2 (r = 0.28) with zero slope. In conclusion, the results suggested that fumaric acid and acrylic acid to some extent was reduced to propionate without associative effects on measures for H2 redirection. Furthermore, phloroglucinol seemed not to be metabolized in the rumen in the present study, as no effects on rumen acetate or measures of H2 were observed. Changes in H2 headspace and emission may be a poor proxy for actual changes in the rumen fluid concentration of H2.

2.
Sci Rep ; 13(1): 12797, 2023 08 07.
Article En | MEDLINE | ID: mdl-37550361

Enteric methane (CH4) emission is one of the major greenhouse gasses originating from cattle. Iodoform has in studies been found to be a potent mitigator of rumen CH4 formation in vitro. This study aimed to quantify potential of iodoform as an anti-methanogenic feed additive for dairy cows and investigate effects on feed intake, milk production, feed digestibility, rumen microbiome, and animal health indicators. The experiment was conducted as a 4 × 4 Latin square design using four lactating rumen, duodenal, and ileal cannulated Danish Holstein dairy cows. The treatments consisted of four different doses of iodoform (1) 0 mg/day, (2) 320 mg/day, (3) 640 mg/day, and (4) 800 mg/day. Iodoform was supplemented intra-ruminally twice daily. Each period consisted of 7-days of adaptation, 3-days of digesta and blood sampling, and 4-days of gas exchange measurements using respiration chambers. Milk yield and dry matter intake (DMI) were recorded daily. Rumen samples were collected for microbial analyses and investigated for fermentation parameters. Blood was sampled and analyzed for metabolic and health status indicators. Dry matter intake and milk production decreased linearly by maximum of 48% and 33%, respectively, with increasing dose. Methane yield (g CH4/kg DMI) decreased by maximum of 66%, while up to 125-fold increases were observed in hydrogen yield (g H2/kg DMI) with increasing dose of iodoform. Total tract digestibility of DM, OM, CP, C, NDF, and starch were unaffected by treatments, but large shifts, except for NDF, were observed for ruminal to small intestinal digestion of the nutrients. Some indicators of disturbed rumen microbial activity and fermentation dynamics were observed with increasing dose, but total number of ruminal bacteria was unaffected by treatment. Serum and plasma biomarkers did not indicate negative effects of iodoform on cow health. In conclusion, iodoform was a potent mitigator of CH4 emission. However, DMI and milk production were negatively affected and associated with indications of depressed ruminal fermentation. Future studies might reveal if depression of milk yield and feed intake can be avoided if iodoform is continuously administered by mixing it into a total mixed ration.


Diet , Lactation , Female , Cattle , Animals , Lactation/physiology , Diet/veterinary , Methane/metabolism , Dietary Supplements/analysis , Milk/chemistry , Rumen/metabolism , Fermentation , Digestion , Silage/analysis
3.
Arch Anim Nutr ; 61(6): 425-43, 2007 Dec.
Article En | MEDLINE | ID: mdl-18069615

The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein turnover rate was measured by means of the end-product method using [15N]glycine as tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein turnover rate. The intake of nucleic acid nitrogen (NAN) increased from 0.15 g/kg W0.75 on M1 to 0.26 g/kg W0.75 on M3 and M4 in the mink experiment, and from 0.08 g/kg W0.75 on P1 to 0.33 g/kg W0.75 on P4 in the pig experiment. Increased NAN intake led, in both experiments, to increased allantoin excretion. Analysis of species effects showed that minks excreted 1.72 mmol/ kg W0.75 of allantoin, significantly more than the 0.95 mmol/kg W0.75 excreted by pigs. In minks, approximately 96% of the excreted purine base derivatives consisted of allantoin, whereas in pigs approximately 93% did. Thus, increasing the dietary content of BPM increased protein turnover rate in minks but not in pigs, and allantoin excretion increased with increasing dietary BPM although it seemed that mink decomposed purine bases to their end-product more completely than pigs did. Collectively these data show that BPM is a suitable protein source for pigs and mink, and recorded differences between species were to a large extent due to differences in protein retention capacity and muscle mass.


Bacterial Proteins/administration & dosage , Bacterial Proteins/metabolism , Dietary Proteins/metabolism , Mink/metabolism , Swine/metabolism , Allantoin/urine , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Bacterial Proteins/urine , Dietary Proteins/administration & dosage , Dietary Proteins/urine , Digestion , Dose-Response Relationship, Drug , Male , Mink/growth & development , Mink/urine , Nitrogen/metabolism , Nitrogen/urine , Nitrogen Isotopes , Random Allocation , Species Specificity , Swine/growth & development , Swine/urine
...