Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Protoc ; 19(2): 565-594, 2024 Feb.
Article En | MEDLINE | ID: mdl-38087082

To produce abundant cell culture samples to generate large, standardized image datasets of human induced pluripotent stem (hiPS) cells, we developed an automated workflow on a Hamilton STAR liquid handler system. This was developed specifically for culturing hiPS cell lines expressing fluorescently tagged proteins, which we have used to study the principles by which cells establish and maintain robust dynamic localization of cellular structures. This protocol includes all details for the maintenance, passage and seeding of cells, as well as Matrigel coating of 6-well plastic plates and 96-well optical-grade, glass plates. We also developed an automated image-based hiPS cell colony segmentation and feature extraction pipeline to streamline the process of predicting cell count and selecting wells with consistent morphology for high-resolution three-dimensional (3D) microscopy. The imaging samples produced with this protocol have been used to study the integrated intracellular organization and cell-to-cell variability of hiPS cells to train and develop deep learning-based label-free predictions from transmitted-light microscopy images and to develop deep learning-based generative models of single-cell organization. This protocol requires some experience with robotic equipment. However, we provide details and source code to facilitate implementation by biologists less experienced with robotics. The protocol is completed in less than 10 h with minimal human interaction. Overall, automation of our cell culture procedures increased our imaging samples' standardization, reproducibility, scalability and consistency. It also reduced the need for stringent culturist training and eliminated culturist-to-culturist variability, both of which were previous pain points of our original manual pipeline workflow.


Induced Pluripotent Stem Cells , Humans , Microscopy , Reproducibility of Results , Cell Culture Techniques/methods , Automation
2.
Nature ; 613(7943): 345-354, 2023 01.
Article En | MEDLINE | ID: mdl-36599983

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Induced Pluripotent Stem Cells , Intracellular Space , Humans , Induced Pluripotent Stem Cells/cytology , Single-Cell Analysis , Datasets as Topic , Interphase , Cell Shape , Mitosis , Cell Polarity , Cell Survival
3.
Cell Syst ; 12(6): 670-687.e10, 2021 06 16.
Article En | MEDLINE | ID: mdl-34043964

Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.


Induced Pluripotent Stem Cells , Cell Differentiation/genetics , Humans , Myocytes, Cardiac/metabolism , Transcriptome/genetics
4.
Stem Cell Reports ; 12(5): 1145-1158, 2019 05 14.
Article En | MEDLINE | ID: mdl-30956114

We describe a multistep method for endogenous tagging of transcriptionally silent genes in human induced pluripotent stem cells (hiPSCs). A monomeric EGFP (mEGFP) fusion tag and a constitutively expressed mCherry fluorescence selection cassette were delivered in tandem via homology-directed repair to five genes not expressed in hiPSCs but important for cardiomyocyte sarcomere function: TTN, MYL7, MYL2, TNNI1, and ACTN2. CRISPR/Cas9 was used to deliver the selection cassette and subsequently mediate its excision via microhomology-mediated end-joining and non-homologous end-joining. Most excised clones were effectively tagged, and all properly tagged clones expressed the mEGFP fusion protein upon differentiation into cardiomyocytes, allowing live visualization of these cardiac proteins at the sarcomere. This methodology provides a broadly applicable strategy for endogenously tagging transcriptionally silent genes in hiPSCs, potentially enabling their systematic and dynamic study during differentiation and morphogenesis.


CRISPR-Cas Systems , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Sarcomeres/genetics , Actinin/genetics , Actinin/metabolism , Amino Acid Sequence , Cell Differentiation/genetics , Cell Line , DNA End-Joining Repair/genetics , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Sarcomeres/metabolism , Sequence Homology, Amino Acid , Troponin I/genetics , Troponin I/metabolism
5.
Proc Natl Acad Sci U S A ; 111(16): 5860-5, 2014 Apr 22.
Article En | MEDLINE | ID: mdl-24706919

The microtubule (MT) cytoskeleton plays an essential role in mitosis, intracellular transport, cell shape, and cell migration. The assembly and disassembly of MTs, which can occur through the addition or loss of subunits at the plus- or minus-ends of the polymer, is essential for MTs to carry out their biological functions. A variety of proteins act on MT ends to regulate their dynamics, including a recently described family of MT minus-end binding proteins called calmodulin-regulated spectrin-associated protein (CAMSAP)/Patronin/Nezha. Patronin, the single member of this family in Drosophila, was previously shown to stabilize MT minus-ends against depolymerization in vitro and in vivo. Here, we show that all three mammalian CAMSAP family members also bind specifically to MT minus-ends and protect them against kinesin-13-induced depolymerization. However, these proteins differ in their abilities to suppress tubulin addition at minus-ends and to dissociate from MTs. CAMSAP1 does not interfere with polymerization and tracks along growing minus-ends. CAMSAP2 and CAMSAP3 decrease the rate of tubulin incorporation and remain bound, thereby creating stretches of decorated MT minus-ends. By using truncation analysis, we find that somewhat different minimal domains of CAMSAP and Patronin are involved in minus-end localization. However, we find that, in both cases, a highly conserved C-terminal domain and a more variable central domain cooperate to suppress minus-end dynamics in vitro and that both regions are required to stabilize minus-ends in Drosophila S2 cells. These results show that members of the CAMSAP/Patronin family all localize to and protect minus-ends but have evolved distinct effects on MT dynamics.


Cytoskeletal Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Cytoskeletal Proteins/chemistry , Drosophila melanogaster/chemistry , Humans , Kinesins/metabolism , Microtubule-Associated Proteins/chemistry , Polymerization , Protein Binding , Protein Structure, Tertiary , Protein Subunits/metabolism , Tubulin/metabolism
6.
Mol Cell Biol ; 30(22): 5295-305, 2010 Nov.
Article En | MEDLINE | ID: mdl-20855526

Control of gene expression by the phosphatidylinositol (PI) 3-kinase/Akt pathway plays an important role in mammalian cell proliferation and survival, and numerous transcription factors and genes regulated by PI 3-kinase signaling have been identified. Because steady-state levels of mRNA are regulated by degradation as well as transcription, we have investigated the importance of mRNA degradation in controlling gene expression downstream of PI 3-kinase. We previously performed global expression analyses that identified a set of approximately 50 genes that were downregulated following inhibition of PI 3-kinase in proliferating T98G cells. By blocking transcription with actinomycin D, we found that almost 40% of these genes were regulated via effects of PI 3-kinase on mRNA stability. Analyses of ß-globin-3' untranslated region (UTR) fusion transcripts indicated that sequences within 3' UTRs were the primary determinants of rapid mRNA decay. Small interfering RNA (siRNA) experiments further showed that knockdown of BRF1 or KSRP, both ARE binding proteins (ARE-BPs) regulated by Akt, stabilized the mRNAs of a majority of the downregulated genes but that knockdown of ARE-BPs that are not regulated by PI 3-kinase did not affect degradation of these mRNAs. These results show that PI 3-kinase regulation of mRNA stability, predominantly mediated by BRF1, plays a major role in regulating gene expression.


Gene Expression Regulation , Phosphatidylinositol 3-Kinase/metabolism , RNA Stability , Signal Transduction/physiology , 3' Untranslated Regions , Animals , Cell Line , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Molecular Sequence Data , Phosphatidylinositol 3-Kinase/genetics , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 2): 056308, 2007 May.
Article En | MEDLINE | ID: mdl-17677165

Multiple oil drops bouncing on the surface of a vertically vibrating bath of the same oil exhibit self-organization behavior in two dimensions [S. Protière, Y. Couder, E. Fort, and A. Boudaoud, J. Phys.: Condens. Matter 17, S3529 (2005)]. We describe further the morphology and dynamic behavior of stable assemblies of large bouncing oil drops, for which we find that both the spacing and the lattice structure itself change with frequency, with variants of both square and hexagonal structures being observed. Large "rafts" of drops form soft triangular lattices with faceted boundaries. Small clusters of drops are unstable to coherent, collective spinning under certain driving conditions, manifesting spontaneous rotational symmetry breaking.

...