Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224498

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Médula Cervical , Efrina-B2 , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Astrocitos/metabolismo , Médula Cervical/metabolismo , Médula Cervical/patología , Diafragma/inervación , Modelos Animales de Enfermedad , Efrina-B2/genética , Ratones Transgénicos , Enfermedades Neurodegenerativas/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
2.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37215009

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1-G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.

3.
Nat Commun ; 14(1): 1920, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024449

RESUMEN

Fronto-striatal circuits have been implicated in cognitive control of behavioral output for social and appetitive rewards. The functional diversity of prefrontal cortical populations is strongly dependent on their synaptic targets, with control of motor output mediated by connectivity to dorsal striatum. Despite evidence for functional diversity along the anterior-posterior striatal axis, it is unclear how distinct fronto-striatal sub-circuits support value-based choice. Here we found segregated prefrontal populations defined by anterior/posterior dorsomedial striatal target. During a feedback-based 2-alternative choice task, single-photon imaging revealed circuit-specific representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-DMS) robustly modulated during choices and negative outcomes, while prelimbic neurons targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition of PL::A-DMS circuits strongly impacted choice monitoring and responses to negative outcomes while inhibition of PL::P-DMS impaired task engagement and strategies following positive outcomes. Together our data uncover PL populations engaged in distributed processing for value-based choice.


Asunto(s)
Cuerpo Estriado , Neostriado , Ratones , Masculino , Animales , Cuerpo Estriado/fisiología , Corteza Prefrontal/fisiología , Inhibición Psicológica
4.
Elife ; 82019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30789343

RESUMEN

Cortical networks are characterized by sparse connectivity, with synapses found at only a subset of axo-dendritic contacts. Yet within these networks, neurons can exhibit high connection probabilities, suggesting that cell-intrinsic factors, not proximity, determine connectivity. Here, we identify ephrin-B3 (eB3) as a factor that determines synapse density by mediating a cell-cell competition that requires ephrin-B-EphB signaling. In a microisland culture system designed to isolate cell-cell competition, we find that eB3 determines winning and losing neurons in a contest for synapses. In a Mosaic Analysis with Double Markers (MADM) genetic mouse model system in vivo the relative levels of eB3 control spine density in layer 5 and 6 neurons. MADM cortical neurons in vitro reveal that eB3 controls synapse density independently of action potential-driven activity. Our findings illustrate a new class of competitive mechanism mediated by trans-synaptic organizing proteins which control the number of synapses neurons receive relative to neighboring neurons.


Asunto(s)
Comunicación Celular , Corteza Cerebral/citología , Efrina-B3/metabolismo , Red Nerviosa/fisiología , Neuronas/metabolismo , Animales , Ratones
5.
Mol Cell Neurosci ; 91: 108-121, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30031105

RESUMEN

Synapses are specialized cell-cell junctions that underlie the function of neural circuits by mediating communication between neurons. Both the formation and function of synapses require tight coordination of signaling between pre- and post-synaptic neurons. Trans-synaptic organizing molecules are important mediators of such signaling. Here we discuss how the EphB and ephrin-B families of trans-synaptic organizing proteins direct synapse formation during early development and regulate synaptic function and plasticity at mature synapses. Finally, we highlight recent evidence linking the synaptic organizing role of EphBs and ephrin-Bs to diseases of maladaptive synaptic function and plasticity.


Asunto(s)
Efrinas/metabolismo , Receptores de la Familia Eph/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Neurogénesis , Sinapsis/fisiología , Transmisión Sináptica
6.
Nat Neurosci ; 18(11): 1594-605, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26479588

RESUMEN

Organization of signaling complexes at excitatory synapses by membrane-associated guanylate kinase (MAGUK) proteins regulates synapse development, plasticity, senescence and disease. Post-translational modification of MAGUK family proteins can drive their membrane localization, yet it is unclear how these intracellular proteins are targeted to sites of synaptic contact. Here we show using super-resolution imaging, biochemical approaches and in vivo models that the trans-synaptic organizing protein ephrin-B3 controls the synaptic localization and stability of PSD-95 and links these events to changes in neuronal activity via negative regulation of a newly identified mitogen-associated protein kinase (MAPK)-dependent phosphorylation site on ephrin-B3, Ser332. Unphosphorylated ephrin-B3 was enriched at synapses, and interacted directly with and stabilized PSD-95 at synapses. Activity-induced phosphorylation of Ser332 dispersed ephrin-B3 from synapses, prevented the interaction with PSD-95 and enhanced the turnover of PSD-95. Thus, ephrin-B3 specifies the synaptic localization of PSD-95 and likely links the synaptic stability of PSD-95 to changes in neuronal activity.


Asunto(s)
Efrina-B3/metabolismo , Guanilato-Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Gatos , Homólogo 4 de la Proteína Discs Large , Efrina-B3/genética , Femenino , Guanilato-Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Embarazo , Procesamiento Proteico-Postraduccional/genética , Ratas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA