Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Biochim Biophys Acta Gen Subj ; : 130673, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029539

RESUMEN

BACKGROUND: Biomolecular condensation via liquid-liquid phase separation (LLPS) is crucial for orchestrating cellular activities temporospatially. Although the rheological heterogeneity of biocondensates and the structural dynamics of their constituents carry critical functional information, methods to quantitatively study biocondensates are lacking. Single-molecule fluorescence research can offer insights into biocondensation mechanisms. Unfortunately, as dense condensates tend to sink inside their dilute aqueous surroundings, studying their properties via methods relying on Brownian diffusion may fail. METHODS: We take a first step towards single-molecule research on condensates of Tau protein under flow in a microfluidic channel of an in-house developed microfluidic chip. Fluorescence correlation spectroscopy (FCS), a well-known technique to collect molecular characteristics within a sample, was employed with a newly commercialised technology, where FCS is performed on an array detector (AD-FCS), providing detailed diffusion and flow information. RESULTS: The AD-FCS technology allowed characterising our microfluidic chip, revealing 3D flow profiles. Subsequently, AD-FCS allowed mapping the flow of Tau condensates while measuring their burst durations through the stationary laser. Lastly, AD-FCS allowed obtaining flow velocity and burst duration data, the latter of which was used to estimate the condensate size distribution within LLPS samples. CONCLUSION: Studying biocondensates under flow through AD-FCS is promising for single-molecule experiments. In addition, AD-FCS shows its ability to estimate the size distribution in condensate samples in a convenient manner, prompting a new way of investigating biocondensate phase diagrams. GENERAL SIGNIFICANCE: We show that AD-FCS is a valuable tool for advancing research on understanding and characterising LLPS properties of biocondensates.

2.
ACS Appl Mater Interfaces ; 16(23): 30556-30566, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38806166

RESUMEN

Mannose-binding lectin (MBL) activates the complement system lectin pathway and subsequent inflammatory mechanisms. The incidence and outcome of many human diseases, such as brain ischemia and infections, are associated with and influenced by the activity and serum concentrations of MBL in body fluids. To quantify MBL levels, tests based on ELISA are used, requiring several incubation and washing steps and lengthy turnaround times. Here, we aimed to develop a nanoplasmonic assay for direct MBL detection in human serum at the point of care. Our assay is based on gold nanorods (GNRs) functionalized with mannose (Man-GNRs) via an amphiphilic linker. We experimentally determined the effective amount of sugar linked to the nanorods' surface, resulting in an approximate grafting density of 4 molecules per nm2, and an average number of 11 to 13 MBL molecules binding to a single nanoparticle. The optimal Man-GNRs concentration to achieve the highest sensitivity in MBL detection was 15 µg·mL-1. The specificity of the assay for MBL detection both in simple buffer and in complex pooled human sera was confirmed. Our label-free biosensor is able to detect MBL concentrations as low as 160 ng·mL-1 within 15 min directly in human serum via a one-step reaction and by using a microplate reader. Hence, it forms the basis for a fast, noninvasive, point-of-care assay for diagnostic indications and monitoring of disease and therapy.


Asunto(s)
Técnicas Biosensibles , Oro , Lectina de Unión a Manosa , Sistemas de Atención de Punto , Humanos , Oro/química , Lectina de Unión a Manosa/sangre , Lectina de Unión a Manosa/química , Técnicas Biosensibles/métodos , Nanotubos/química , Manosa/química , Manosa/sangre , Nanopartículas del Metal/química
3.
J Mol Biol ; 435(23): 168310, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806553

RESUMEN

G protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins in the human genome, and represent one of the most important classes of drug targets. Their structural studies facilitate rational drug discovery. However, atomic structures of only about 20% of human GPCRs have been solved to date. Recombinant production of GPCRs for structural studies at a large scale is challenging due to their low expression levels and stability. Therefore, in this study, we explored the efficacy of the eukaryotic system LEXSY (Leishmania tarentolae) for GPCR production. We selected the human A2A adenosine receptor (A2AAR), as a model protein, expressed it in LEXSY, purified it, and compared with the same receptor produced in insect cells, which is the most popular expression system for structural studies of GPCRs. The A2AAR purified from both expression systems showed similar purity, stability, ligand-induced conformational changes and structural dynamics, with a remarkably higher protein yield in the case of LEXSY expression. Overall, our results suggest that LEXSY is a promising platform for large-scale production of GPCRs for structural studies.


Asunto(s)
Receptor de Adenosina A2A , Receptores Acoplados a Proteínas G , Proteínas Recombinantes , Humanos , Descubrimiento de Drogas , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Leishmania , Receptor de Adenosina A2A/biosíntesis , Receptor de Adenosina A2A/química , Conformación Proteica , Ligandos , Estabilidad Proteica
4.
Biophys Rep (N Y) ; 3(3): 100122, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37649577

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) is a popular modality to create additional contrast in fluorescence images. By carefully analyzing pixel-based nanosecond lifetime patterns, FLIM allows studying complex molecular populations. At the single-molecule or single-particle level, however, image series often suffer from low signal intensities per pixel, rendering it difficult to quantitatively disentangle different lifetime species, such as during Förster resonance energy transfer (FRET) analysis in the presence of a significant donor-only fraction. In this article we investigate whether an object localization strategy and the phasor approach to FLIM have beneficial effects when carrying out FRET analyses of single particles. Using simulations, we first showed that an average of ∼300 photons, spread over the different pixels encompassing single fluorescing particles and without background, is enough to determine a correct phasor signature (SD < 5% for a 4-ns lifetime). For immobilized single- or double-labeled dsDNA molecules, we next validated that particle-based phasor-FLIM-FRET readily allows estimating fluorescence lifetimes and FRET from single molecules. Thirdly, we applied particle-based phasor-FLIM-FRET to investigate protein-protein interactions in subdiffraction HIV-1 viral particles. To do this, we first quantitatively compared the fluorescence brightness, lifetime, and photostability of different popular fluorescent protein-based FRET probes when genetically fused to the HIV-1 integrase enzyme in viral particles, and conclude that eGFP, mTurquoise2, and mScarlet perform best. Finally, for viral particles coexpressing FRET-donor/acceptor-labeled IN, we determined the absolute FRET efficiency of IN oligomers. Available in a convenient open-source graphical user interface, we believe that particle-based phasor-FLIM-FRET is a promising tool to provide detailed insights in samples suffering from low overall signal intensities.

5.
Commun Biol ; 6(1): 362, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012383

RESUMEN

The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptor de Adenosina A2A , Humanos , Receptor de Adenosina A2A/metabolismo , Conformación Molecular , Membrana Celular/metabolismo , Proteínas/metabolismo
6.
Nat Methods ; 20(4): 523-535, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973549

RESUMEN

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas , Transferencia Resonante de Energía de Fluorescencia/métodos , Reproducibilidad de los Resultados , Proteínas/química , Conformación Molecular , Laboratorios
7.
Elife ; 112022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36260068

RESUMEN

Single-molecule fluorescence spectroscopy and molecular dynamics simulations illuminate the structure and dynamics of PSD-95, a protein involved in neural plasticity.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Simulación de Dinámica Molecular , Homólogo 4 de la Proteína Discs Large
8.
Cell Mol Life Sci ; 79(11): 540, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36197517

RESUMEN

Glycine receptors (GlyRs) are ligand-gated pentameric chloride channels in the central nervous system. GlyR-α3 is a possible target for chronic pain treatment and temporal lobe epilepsy. Alternative splicing into K or L variants determines the subcellular fate and function of GlyR-α3, yet it remains to be shown whether its different splice variants can functionally co-assemble, and what the properties of such heteropentamers would be. Here, we subjected GlyR-α3 to a combined fluorescence microscopy and electrophysiology analysis. We employ masked Pearson's and dual-color spatiotemporal correlation analysis to prove that GlyR-α3 splice variants heteropentamerize, adopting the mobility of the K variant. Fluorescence-based single-subunit counting experiments revealed a variable and concentration ratio dependent hetero-stoichiometry. Via cell-attached single-channel electrophysiology we show that heteropentamers exhibit currents in between those of K and L variants. Our data are compatible with a model where α3 heteropentamerization fine-tunes mobility and activity of GlyR-α3 channels, which is important to understand and tackle α3 related diseases.


Asunto(s)
Receptores de Glicina , Transmisión Sináptica , Empalme Alternativo/genética , Ligandos , Mutación , Receptores de Glicina/genética
9.
Br J Cancer ; 126(11): 1604-1615, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347323

RESUMEN

BACKGROUND: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS: A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias del Recto , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Hidrocarburos , Inmunohistoquímica , Neoplasias Hepáticas/secundario , Metástasis de la Neoplasia
10.
Nat Chem Biol ; 17(9): 989-997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341587

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is essential to maintain fluid homeostasis in key organs. Functional impairment of CFTR due to mutations in the cftr gene leads to cystic fibrosis. Here, we show that the first nucleotide-binding domain (NBD1) of CFTR can spontaneously adopt an alternate conformation that departs from the canonical NBD fold previously observed. Crystallography reveals that this conformation involves a topological reorganization of NBD1. Single-molecule fluorescence resonance energy transfer microscopy shows that the equilibrium between the conformations is regulated by adenosine triphosphate binding. However, under destabilizing conditions, such as the disease-causing mutation F508del, this conformational flexibility enables unfolding of the ß-subdomain. Our data indicate that, in wild-type CFTR, this conformational transition of NBD1 regulates channel function, but, in the presence of the F508del mutation, it allows domain misfolding and subsequent protein degradation. Our work provides a framework to design conformation-specific therapeutics to prevent noxious transitions.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Desplegamiento Proteico
11.
Nanoscale ; 13(24): 10837-10848, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34114594

RESUMEN

Gold nanorods (GNRs) are a promising platform for nanoplasmonic biosensing. The localised surface plasmon resonance (LSPR) peak of GNRs is located in the near-infrared optical window and is sensitive to local binding events, enabling label-free detection of biomarkers in complex biological fluids. A key challenge in the development of such sensors is achieving target affinity and selectivity, while both minimizing non-specific binding and maintaining colloidal stability. Herein, we reveal how GNRs decorated with galactosamine-terminated polymer ligands display significantly different binding responses in buffer compared to serum, due to biocorona formation, and how biocorona displacement due to lectin binding plays a key role in their optical responses. GNRs were coated with either poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) or poly(N-hydroxyethyl acrylamide) (PHEA) prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerisation and end-functionalised with galactosamine (Gal) as the lectin-targeting unit. In buffer Gal-PHEA-coated GNRs aggregated upon soybean agglutinin (SBA) addition, whereas Gal-PHPMA-coated GNRs exhibited a red-shift of the LSPR spectrum without aggregation. In contrast, when incubated in serum Gal-PHPMA-coated nanorods showed no binding response, while Gal-PHEA GNRs exhibited a dose-dependent blue-shift of the LSPR peak, which is the opposite direction (red-shift) to what was observed in buffer. This differential behaviour was attributed to biocorona formation onto both polymer-coated GNRs, shown by differential centrifugal sedimentation and nanoparticle tracking analysis. Upon addition of SBA to the Gal-PHEA coated nanorods, signal was generated due to displacement of weakly-bound biocorona components by lectin binding. However, in the case of Gal-PHPMA which had a thicker corona, attributed to lower polymer grafting densities, addition of SBA did not lead to biocorona displacement and there was no signal output. These results show that plasmonic optical responses in complex biological media can be significantly affected by biocorona formation, and that biocorona formation itself does not prevent sensing so long as its exact nature (e.g. 'hard versus soft') is tuned.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Oro , Polímeros , Resonancia por Plasmón de Superficie
12.
Nat Commun ; 12(1): 2541, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953187

RESUMEN

Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Óptica/métodos , Anisotropía , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos
13.
Elife ; 102021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779550

RESUMEN

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Biología Molecular/métodos , Imagen Individual de Molécula/métodos , Biología Molecular/instrumentación , Imagen Individual de Molécula/instrumentación
14.
Small ; 17(5): e2006786, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448084

RESUMEN

Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease.


Asunto(s)
Células Endoteliales , Vesículas Extracelulares , Análisis por Conglomerados , Humanos , Plasma , Aprendizaje Automático no Supervisado
16.
ACS Nano ; 14(9): 10775-10783, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32820634

RESUMEN

The molecular composition of viral particles indicates that a single virion is capable of initiating an infection. However, the majority of viruses that come into contact with cells fails to infect them. Understanding what makes one viral particle more successful than others requires visualizing the infection process directly in living cells, one virion at a time. In this Perspective, we explain how single-virus imaging using fluorescence microscopy can provide answers to unsolved questions in virology. We discuss fluorescent labeling of virus particles, resolution at the subviral and molecular levels, tracking in living cells, and imaging of interactions between viral and host proteins. We end this Perspective with a set of remaining questions in understanding the life cycle of retroviruses and how imaging a single virus can help researchers address these questions. Although we use examples from the HIV field, these methods are of value for the study of other viruses as well.


Asunto(s)
Infecciones por VIH , Virus , Humanos , Microscopía Fluorescente , Virión , Replicación Viral
18.
Front Immunol ; 11: 1114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582194

RESUMEN

Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations result in a primary immunodeficiency (PID) characterized typically by chronic mucocutaneous candidiasis (CMC), but a wider phenotypic range is reported and remains unexplained from a pathophysiological point-of-view. We hypothesized that different STAT1 GOF mutations may result in distinct molecular mechanisms, possibly explaining the variable phenotypes observed in patients. We selected STAT1 GOF mutants (R274W, R321S, T419R, and N574I) that are spread over the protein and studied their dynamic behavior in vitro in U3A and HeLa cell lines. All GOF mutants showed increased STAT1 phosphorylation compared to STAT1 WT. Real-time imaging demonstrated three underlying mechanisms for STAT1 GOF: (i) R274W showed a faster nuclear accumulation, (ii) both R321S and N574I showed a reduced nuclear mobility and slower dephosphorylation, whereas (iii) T419R was near-immobile in the nucleus, potentially due to enhanced binding to chromatin.


Asunto(s)
Enfermedades de Inmunodeficiencia Primaria/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Línea Celular , Supervivencia Celular , Mutación con Ganancia de Función , Humanos , Fenotipo
19.
Nat Chem Biol ; 16(8): 834-840, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32393900

RESUMEN

Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (RelTt). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of RelTt (RelTtNTD) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.


Asunto(s)
Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Secuencia de Aminoácidos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Regulación Bacteriana de la Expresión Génica/genética , Genes rel/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hidrolasas/metabolismo , Ligasas/metabolismo , Ligasas/fisiología , Nucleótidos/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/metabolismo
20.
Data Brief ; 29: 105348, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32181308

RESUMEN

The data provided with this paper are image series of slowly diffusing GlyRa3 molecules, linked to either eGFP or mCherry fluorescent proteins, at the membrane of HEK cells, acquired on a Zeiss LSM880 confocal laser scanning microscope. Raster spectral image cross-correlation spectroscopy (RSICS) is applied to the data, a technique that exploits intensity fluctuations in confocal image series recorded using a spectral detector to study the diffusion and concentration of molecules, and interactions between them. First, spectral filters are created from reference image series containing GlyRa3 labeled with a single fluorophore. Once experimental data containing GlyRa3 labeled with both fluorophores is acquired, single images are either autocorrelated, or the cross-correlation is calculated between two images, each one containing the data for eGFP or mCherry labeled GyRa 3. Data is then fit with a one-component model assuming a two-dimensional Gaussian point spread function to obtain the diffusion coefficient, D, and average number of molecules in the focus, N. The software package PAM is used to analyze all the acquired data. The data can be used as a reference for artifact-free two-color ccRICS that contains slowly diffusing interacting molecules. Additionally, the analysis workflow described in this paper helps researchers avoid common errors during a RICS experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA