Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884529

RESUMEN

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

2.
FEBS Lett ; 597(9): 1290-1299, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36776133

RESUMEN

Ocular pterygium-digital keloid dysplasia (OPDKD) is a rare hereditary disease characterized by corneal ingrowth of vascularized conjunctival tissue early in life. Later, patients develop keloids on fingers and toes but are otherwise healthy. In a recently described family with OPDKD, we report the presence of a de novo c.770C > T, p.(Thr257Ile) variant in PELI2 in the affected individual. PELI2 encodes for the E3 ubiquitin ligase Pellino-2. In transgenic U87MG cells overexpressing Pellino-2 with the p.(Thr257Ile) amino acid substitution, constitutive activation of the NLRP3 inflammasome was observed. However, the Thr257Ile variant did not affect Pellino-2 intracellular localization, its binding to known interaction partners, nor its stability. Our findings indicate that constitutive autoactivation of the NLRP3 inflammasome contributes to the development of PELI2-associated OPDKD.


Asunto(s)
Queloide , Pterigion , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Queloide/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Pterigion/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Am J Med Genet A ; 191(2): 370-377, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322476

RESUMEN

The 5p13 microduplication syndrome is a contiguous gene syndrome characterized by developmental delay intellectual disability, hypotonia, unusual facies with marked variability, mild limb anomalies, and in some cases brain malformations. The duplication ranges in size from 0.25 to 1.08 Mb and encompasses five genes (NIPBL, SLC1A3, CPLANE1, NUP155, and WDR70), of which NIPBL has been suggested to be the main dose sensitive gene. All patients with duplication of the complete NIPBL gene reported thus far have been de novo. Here, we report a 25-week-old male fetus with hypertelorism, wide and depressed nasal bridge, depressed nasal tip, low-set ears, clenched hands, flexion contracture of elbows, knees, and left wrist, and bilateral clubfeet, bowing and shortening of long bones and brain malformation of dorsal part of callosal body. The fetus had a 667 kb gain at 5p13.2 encompassing SLC1A3, NIPBL and exons 22-52 of CPLANE1. The microduplication was inherited from the healthy father, in whom no indication for mosaicism was detected. The family demonstrates that incomplete penetrance of 5p13 microduplication syndrome may occur which is important in genetic counseling of families with this entity.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Humanos , Masculino , Anomalías Múltiples/genética , Proteínas de Ciclo Celular/genética , Duplicación Cromosómica/genética , Padre , Feto , Discapacidad Intelectual/genética , Mosaicismo
6.
Am J Med Genet A ; 188(11): 3191-3228, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36062894

RESUMEN

An international group of clinicians working in the field of dysmorphology has initiated the standardization of terms used to describe human morphology. The goals are to standardize these terms and reach consensus regarding their definitions. In this way, we will increase the utility of descriptions of the human phenotype and facilitate reliable comparisons of findings among patients. Additional discussions with other workers in dysmorphology and related fields, such as developmental biology and molecular genetics, will become more precise. Here we introduce the anatomy of the trunk and limbs and define and illustrate the terms that describe the major characteristics of these body regions.


Asunto(s)
Extremidades , Antropometría , Consenso , Humanos , Fenotipo
7.
Eur J Hum Genet ; 30(7): 841-847, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388185

RESUMEN

The existing knowledge about morbidity in adults with Rubinstein-Taybi syndrome (RTS) is limited and detailed data on their natural history and response to management are needed for optimal care in later life. We formed an international, multidisciplinary working group that developed an accessible questionnaire including key issues about adults with RTS and disseminated this to all known RTS support groups via social media. We report the observations from a cohort of 87 adult individuals of whom 43 had a molecularly confirmed diagnosis. The adult natural history of RTS is defined by prevalent behavioural/psychiatric problems (83%), gastrointestinal problems (73%) that are represented mainly by constipation; and sleep problems (62%) that manifest in a consistent pattern of sleep apnoea, difficulty staying asleep and an increased need for sleep. Furthermore, over than half of the RTS individuals (65%) had skin and adnexa-related problems. Half of the individuals receive multidisciplinary follow-up and required surgery at least once, and most frequently more than once, during adulthood. Our data confirm that adults with RTS enjoy both social and occupational possibilities, show a variegated experience of everyday life but experience a significant morbidity and ongoing medical issues which do not appear to be as coordinated and multidisciplinary managed as in paediatric patients. We highlight the need for optimal care in a multidisciplinary setting including the pivotal role of specialists for adult care.


Asunto(s)
Síndrome de Rubinstein-Taybi , Adulto , Niño , Humanos , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/epidemiología , Síndrome de Rubinstein-Taybi/genética , Encuestas y Cuestionarios
8.
Hum Mol Genet ; 30(1): 72-77, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33450762

RESUMEN

Ocular pterygium-digital keloid dysplasia (OPDKD) presents in childhood with ingrowth of vascularized connective tissue on the cornea leading to severely reduced vision. Later the patients develop keloids on digits but are otherwise healthy. The overgrowth in OPDKD affects body parts that typically have lower temperature than 37°C. We present evidence that OPDKD is associated with a temperature sensitive, activating substitution, p.(Asn666Tyr), in PDGFRB. Phosphorylation levels of PDGFRB and downstream targets were higher in OPDKD fibroblasts at 37°C but were further greatly increased at the average corneal temperature of 32°C. This suggests that the substitution cause significant constitutive autoactivation mainly at lower temperature. In contrast, a different substitution in the same codon, p.(Asn666Ser), is associated with Penttinen type of premature aging syndrome. This devastating condition is characterized by widespread tissue degeneration, including pronounced chronic ulcers and osteolytic resorption in distal limbs. In Penttinen syndrome fibroblasts, equal and high levels of phosphorylated PDGFRB was present at both 32°C and 37°C. This indicates that this substitution causes severe constitutive autoactivation of PDGFRB regardless of temperature. In line with this, most downstream targets were not affected by lower temperature. However, STAT1, important for tissue wasting, did show further increased phosphorylation at 32°C. Temperature-dependent autoactivation offers an explanation to the strikingly different clinical outcomes of substitutions in the Asn666 codon of PDGFRB.


Asunto(s)
Acroosteólisis/genética , Conjuntiva/anomalías , Deformidades Congénitas de las Extremidades/genética , Progeria/genética , Pterigion/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Anomalías Cutáneas/genética , Acroosteólisis/diagnóstico por imagen , Acroosteólisis/patología , Adolescente , Adulto , Sustitución de Aminoácidos/genética , Niño , Preescolar , Conjuntiva/diagnóstico por imagen , Conjuntiva/patología , Femenino , Humanos , Lactante , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Deformidades Congénitas de las Extremidades/patología , Masculino , Mutación Missense/genética , Fenotipo , Fosforilación/genética , Progeria/diagnóstico por imagen , Progeria/patología , Pterigion/diagnóstico por imagen , Pterigion/patología , Anomalías Cutáneas/patología , Temperatura , Adulto Joven
10.
Genet Med ; 23(1): 149-154, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873933

RESUMEN

PURPOSE: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Uñas Malformadas , ATPasas de Translocación de Protón Vacuolares , Epilepsia/genética , Exoma , Proteínas Activadoras de GTPasa , Humanos , Discapacidad Intelectual/genética , Uñas Malformadas/genética , Fenotipo , ATPasas de Translocación de Protón Vacuolares/genética
11.
Eur J Med Genet ; 63(11): 104028, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32791128

RESUMEN

Aging is a physiological process that is in part genetically determined. Some of the signs and symptoms of aging also occur prematurely in Mendelian disorders. Such disorders are excellent sources of information of underlying mechanisms for these components of aging, and studying these may allow detection of pathways that have not yet considered in detail in physiological aging. Here I define the clinical characteristics that constitute aging and propose that at least 40% of aging signs and symptoms should be present before an entity should be tagged as progeroid. A literature search using these characteristics yields 17 entities that fulfill this definition: Hutchinson-Gilford progeria, mandibulo-acral dysplasia, Nestor-Guillermo progeria, Werner syndrome, Cockayne syndrome, cutis laxa progeroid, Penttinen progeroid syndrome, Mandibular underdevelopment, Deafness, Progeroid features, Lipodystrophy, Fontaine progeroid syndrome, SHORT syndrome, Wiedemann-Rautenstrauch syndrome, Mulvihill-Smith syndrome, dyskeratosis congenita, Marfan syndrome lipodystrophy type, Warburg-Cinotti syndrome, Lessel syndrome and Bloom syndrome. The presenting and main characteristics of these entities are indicated briefly. Their pathophysiology is not complete pathophysiology is reviewed but only the pathophysiology of the premature aging characteristics of this series of entities is compared to the known mechanisms ("Hallmarks") of physiological aging as summarized in the review paper by Lopez-Otin and colleagues. Although many causative genes have not been studied fully for all known aging mechanisms the comparison demonstrates that additional mechanisms must play a role to explain the aging characteristic in some of the progeroid entities of the progeroid entities, and possibly also in physiological aging.


Asunto(s)
Envejecimiento/genética , Progeria/genética , Envejecimiento/patología , Heterogeneidad Genética , Humanos , Fenotipo , Progeria/patología
12.
Eur J Med Genet ; 63(11): 103995, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32726674

RESUMEN

Aging is widely studied as a physiological process. Segmental aging can also occur prematurely in Mendelian disorders, and these can act this way as excellent sources of information, specifically for the underlying mechanisms. Adequate recognition of such aging characteristics in Mendelian disorders needs a well-defined phenotype of aging. Here the external phenotype of aging is described that can be recognized in the consulting room without major additional studies. Existing definitions of the signs and symptoms in Elements of Morphology or Human Phenotype Ontology are added or a new definition is suggested if none is available.


Asunto(s)
Envejecimiento/fisiología , Fenotipo , Envejecimiento/genética , Envejecimiento/patología , Cara/anatomía & histología , Humanos , Apariencia Física
13.
Genet Med ; 22(11): 1838-1850, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32694869

RESUMEN

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.


Asunto(s)
Blefarofimosis , Hipotricosis , Discapacidad Intelectual , Facies , Deformidades Congénitas del Pie , Humanos , Discapacidad Intelectual/genética , Fenotipo , Factores de Transcripción/genética
14.
Orphanet J Rare Dis ; 15(1): 17, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941540

RESUMEN

BACKGROUND: Lipodystrophy syndromes comprise a group of extremely rare and heterogeneous diseases characterized by a selective loss of adipose tissue in the absence of nutritional deprivation or catabolic state. Because of the rarity of each lipodystrophy subform, research in this area is difficult and international co-operation mandatory. Therefore, in 2016, the European Consortium of Lipodystrophies (ECLip) decided to create a registry for patients with lipodystrophy. RESULTS: The registry was build using the information technology Open Source Registry System for Rare Diseases in the EU (OSSE), an open-source software and toolbox. Lipodystrophy specific data forms were developed based on current knowledge of typical signs and symptoms of lipodystrophy. The platform complies with the new General Data Protection Regulation (EU) 2016/679 by ensuring patient pseudonymization, informational separation of powers, secure data storage and security of communication, user authentication, person specific access to data, and recording of access granted to any data. Inclusion criteria are all patients with any form of lipodystrophy (with the exception of HIV-associated lipodystrophy). So far 246 patients from nine centres (Amsterdam, Bologna, Izmir, Leipzig, Münster, Moscow, Pisa, Santiago de Compostela, Ulm) have been recruited. With the help from the six centres on the brink of recruitment (Cambridge, Lille, Nicosia, Paris, Porto, Rome) this number is expected to double within the next one or 2 years. CONCLUSIONS: A European registry for all patients with lipodystrophy will provide a platform for improved research in the area of lipodystrophy. All physicians from Europe and neighbouring countries caring for patients with lipodystrophy are invited to participate in the ECLip Registry. STUDY REGISTRATION: ClinicalTrials.gov (NCT03553420). Registered 14 March 2018, retrospectively registered.


Asunto(s)
Lipodistrofia , Enfermedades Raras , Sistema de Registros , Tejido Adiposo , Humanos , Programas Informáticos
15.
JIMD Rep ; 45: 65-69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30349988

RESUMEN

Dihydropyrimidine dehydrogenase (DPD) deficiency is a rare autosomal recessive disorder of the pyrimidine degradation pathway and can lead to intellectual disability, motor retardation, and seizures. Genetic variations in DPYD have also emerged as predictive risk factors for severe toxicity in cancer patients treated with fluoropyrimidines. We recently observed a child born to non-consanguineous parents, who demonstrated seizures, cognitive impairment, language delay, and MRI abnormalities and was found to have marked thymine-uraciluria. No residual DPD activity could be detected in peripheral blood mononuclear cells. Molecular analysis showed that the child was homozygous for the very rare c.257C > T (p.Pro86Leu) variant in DPYD. Functional analysis of the recombinantly expressed DPD mutant showed that the DPD mutant carrying the p.Pro86Leu did not possess any residual DPD activity. Carrier testing in parents revealed that the father was heterozygous for the variant but unexpectedly the mother did not carry the variant. Microsatellite repeat testing with markers covering chromosome 1 showed that the DPD deficiency in the child is due to paternal uniparental isodisomy. Our report thus extends the genetic spectrum underlying DPYD deficiency.

18.
Science ; 356(6342)2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28473638

RESUMEN

Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional technologies-single-cell messenger RNA sequencing (scmRNAseq) and cytometry by time-of-flight (CyTOF)-to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed subpopulations, including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting.


Asunto(s)
Linaje de la Célula , Células Dendríticas/citología , Células Sanguíneas/citología , Diferenciación Celular , Separación Celular/métodos , Humanos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Aprendizaje Automático no Supervisado
19.
Am J Med Genet A ; 173(7): 1739-1746, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28498505

RESUMEN

Frontometaphyseal dysplasia (FMD) is caused by gain-of-function mutations in the X-linked gene FLNA in approximately 50% of patients. Recently we characterized an autosomal dominant form of FMD (AD-FMD) caused by mutations in MAP3K7, which accounts for the condition in the majority of patients who lack a FLNA mutation. We previously also described a patient with a de novo variant in TAB2, which we hypothesized was causative of another form of AD-FMD. In this study, a cohort of 20 individuals with AD-FMD is clinically evaluated. This cohort consists of 15 individuals with the recently described, recurrent mutation (c.1454C>T) in MAP3K7, as well as three individuals with missense mutations that result in substitutions in the N-terminal kinase domain of TGFß-activated kinase 1 (TAK1), encoded by MAP3K7. Additionally, two individuals have missense variants in the gene TAB2, which encodes a protein with a close functional relationship to TAK1, TAK1-associated binding protein 2 (TAB2). Although the X-linked and autosomal dominant forms of FMD are very similar, there are distinctions to be made between the two conditions. Individuals with AD-FMD have characteristic facial features, and are more likely to be deaf, have scoliosis and cervical fusions, and have a cleft palate. Furthermore, there are features only found in AD-FMD in our review of the literature including valgus deformity of the feet and predisposition to keloid scarring. Finally, intellectual disability is present in a small number of subjects with AD-FMD but has not been described in association with X-linked FMD.

20.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 721-730, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28024938

RESUMEN

Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity. All patients possessed a strongly reduced DPD activity, ranging from 9 to 53% of controls. Analysis of the DPD gene (DPYD) showed the presence of 21 variable sites including 4 novel and 4 very rare aberrations: 3 missense mutations, 2 splice-site mutations, 1 intronic mutation, a deletion of 21 nucleotides and a genomic amplification of exons 9-12. Two novel/rare variants (c.2843T>C, c.321+1G>A) were present in multiple, unrelated patients. Functional analysis of recombinantly-expressed DPD mutants carrying the p.I948T and p.G284V mutation showed residual DPD activities of 30% and 0.5%, respectively. Analysis of a DPD homology model indicated that the p.I948T and p.G284V mutations may affect electron transfer and the binding of FAD, respectively. cDNA analysis showed that the c.321+1G>A mutation in DPYD leads to skipping of exon 4 immediately upstream of the mutated splice-donor site in the process of DPD pre-mRNA splicing. A lethal toxicity in two DPD patients suggests that fluoropyrimidines combined with other therapies such as radiotherapy might be particularly toxic for DPD deficient patients. Our study advocates a more comprehensive genotyping approach combined with phenotyping strategies for upfront screening for DPD deficiency to ensure the safe administration of fluoropyrimidines.


Asunto(s)
Antimetabolitos Antineoplásicos/efectos adversos , Capecitabina/efectos adversos , Dihidrouracilo Deshidrogenasa (NADP)/genética , Fluorouracilo/efectos adversos , Mutación , Empalme del ARN , Anciano , Deficiencia de Dihidropirimidina Deshidrogenasa/complicaciones , Deficiencia de Dihidropirimidina Deshidrogenasa/genética , Femenino , Amplificación de Genes , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación Missense , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Variantes Farmacogenómicas , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...