Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(49): eadj5777, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064550

RESUMEN

Secreted bacterial type III secretion system (T3SS) proteins are essential for successful infection by many human pathogens. Both T3SS translocator SipC and effector SipA are critical for Salmonella infection by subversion of the host cell cytoskeleton, but the precise molecular interplay between them remains unknown. Here, using cryo-electron microscopy, we show that SipA binds along the F-actin grooves with a unique binding pattern. SipA stabilizes F-actin through charged interface residues and appears to prevent inorganic phosphate release through closure of the "back door" of adenosine 5'-triphosphate pocket. We also show that SipC enhances the binding of SipA to F-actin, thus demonstrating that a sequential presence of T3SS proteins in host cells is associated with a sequence of infection events-starting with actin nucleation, filament growth, and stabilization. Together, our data explain the coordinated interplay of a precisely tuned and highly effective mechanism during Salmonella infection and provide a blueprint for interfering with Salmonella effectors acting on actin.


Asunto(s)
Actinas , Infecciones por Salmonella , Humanos , Actinas/metabolismo , Microscopía por Crioelectrón , Proteínas Bacterianas/metabolismo , Citoesqueleto de Actina/metabolismo
2.
J Struct Biol ; 215(3): 107990, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364763

RESUMEN

Particle localization (picking) in digital tomograms is a laborious and time-intensive step in cryogenic electron tomography (cryoET) analysis often requiring considerable user involvement, thus becoming a bottleneck for automated cryoET subtomogram averaging (STA) pipelines. In this paper, we introduce a deep learning framework called PickYOLO to tackle this problem. PickYOLO is a super-fast, universal particle detector based on the deep-learning real-time object recognition system YOLO (You Only Look Once), and tested on single particles, filamentous structures, and membrane-embedded particles. After training with the centre coordinates of a few hundred representative particles, the network automatically detects additional particles with high yield and reliability at a rate of 0.24-3.75 s per tomogram. PickYOLO can automatically detect number of particles comparable to those manually selected by experienced microscopists. This makes PickYOLO a valuable tool to substantially reduce the time and manual effort needed to analyse cryoET data for STA, greatly aiding in high-resolution cryoET structure determination.


Asunto(s)
Aprendizaje Profundo , Electrones , Reproducibilidad de los Resultados , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos
3.
mBio ; 13(3): e0026722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35446127

RESUMEN

Gliding motility using cell surface adhesins, and export of proteins by the type IX secretion system (T9SS) are two phylum-specific features of the Bacteroidetes. Both of these processes are energized by the GldLM motor complex, which transduces the proton motive force at the inner membrane into mechanical work at the outer membrane. We previously used cryo-electron microscopy to solve the structure of the GldLM motor core from Flavobacterium johnsoniae at 3.9-Å resolution (R. Hennell James, J. C. Deme, A. Kjaer, F. Alcock, et al., Nat Microbiol 6:221-233, 2021, https://dx.doi.org/10.1038/s41564-020-00823-6). Here, we present structures of homologous complexes from a range of pathogenic and environmental Bacteroidetes species at up to 3.0-Å resolution. These structures show that the architecture of the GldLM motor core is conserved across the Bacteroidetes phylum, although there are species-specific differences at the N terminus of GldL. The resolution improvements reveal a cage-like structure that ties together the membrane-proximal cytoplasmic region of GldL and influences gliding function. These findings add detail to our structural understanding of bacterial ion-driven motors that drive the T9SS and gliding motility. IMPORTANCE Many bacteria in the Bacteroidetes phylum use the type IX secretion system to secrete proteins across their outer membrane. Most of these bacteria can also glide across surfaces using adhesin proteins that are propelled across the cell surface. Both secretion and gliding motility are driven by the GldLM protein complex, which forms a nanoscale electrochemical motor. We used cryo-electron microscopy to study the structure of the GldLM protein complex from different species, including the human pathogens Porphyromonas gingivalis and Capnocytophaga canimorsus. The organization of the motor is conserved across species, but we find species-specific structural differences and resolve motor features at higher resolution. This work improves our understanding of the type IX secretion system, which is a virulence determinant in human and animal diseases.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Bacterianos , Bacteroidetes , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Bacteroidetes/metabolismo , Microscopía por Crioelectrón
4.
Nat Microbiol ; 6(2): 221-233, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432152

RESUMEN

Three classes of ion-driven protein motors have been identified to date: ATP synthase, the bacterial flagellar motor and a proton-driven motor that powers gliding motility and the type 9 protein secretion system in Bacteroidetes bacteria. Here, we present cryo-electron microscopy structures of the gliding motility/type 9 protein secretion system motors GldLM from Flavobacterium johnsoniae and PorLM from Porphyromonas gingivalis. The motor is an asymmetric inner membrane protein complex in which the single transmembrane helices of two periplasm-spanning GldM/PorM proteins are positioned inside a ring of five GldL/PorL proteins. Mutagenesis and single-molecule tracking identify protonatable amino acid residues in the transmembrane domain of the complex that are important for motor function. Our data provide evidence for a mechanism in which proton flow results in rotation of the periplasm-spanning GldM/PorM dimer inside the intra-membrane GldL/PorL ring to drive processes at the bacterial outer membrane.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/química , Flavobacterium/fisiología , Porphyromonas gingivalis/fisiología , Microscopía por Crioelectrón , Flavobacterium/metabolismo , Movimiento , Periplasma/metabolismo , Porphyromonas gingivalis/metabolismo , Dominios Proteicos , Multimerización de Proteína , Protones , Imagen Individual de Molécula
5.
Nat Commun ; 8(1): 1120, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066714

RESUMEN

The covalent modification of protein substrates by ubiquitin regulates a diverse range of critical biological functions. Although it has been established that ubiquitin-like modifiers evolved from prokaryotic sulphur transfer proteins it is less clear how complex eukaryotic ubiquitylation system arose and diversified from these prokaryotic antecedents. The discovery of ubiquitin, E1-like, E2-like and small-RING finger (srfp) protein components in the Aigarchaeota and the Asgard archaea superphyla has provided a substantive step toward addressing this evolutionary question. Encoded in operons, these components are likely representative of the progenitor apparatus that founded the modern eukaryotic ubiquitin modification systems. Here we report that these proteins from the archaeon Candidatus 'Caldiarchaeum subterraneum' operate together as a bona fide ubiquitin modification system, mediating a sequential ubiquitylation cascade reminiscent of the eukaryotic process. Our observations support the hypothesis that complex eukaryotic ubiquitylation signalling pathways have developed from compact systems originally inherited from an archaeal ancestor.


Asunto(s)
Archaea/química , Ubiquitinación , Ubiquitinas/química , Células Eucariotas , Humanos , Modelos Moleculares , Familia de Multigenes , Operón , Filogenia , Complejo de la Endopetidasa Proteasomal/química , Dominios Proteicos , Saccharomyces cerevisiae , Transducción de Señal , Especificidad de la Especie , Azufre/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...