Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Appl Ecol ; 58(4): 718-730, 2021 Apr.
Article En | MEDLINE | ID: mdl-33883780

Plant pathogens are introduced to new geographical regions ever more frequently as global connectivity increases. Predicting the threat they pose to plant health can be difficult without in-depth knowledge of behaviour, distribution and spread. Here, we evaluate the potential for using biological traits and phylogeny to predict global threats from emerging pathogens.We use a species-level trait database and phylogeny for 179 Phytophthora species: oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. We compile host and distribution reports for Phytophthora species across 178 countries and evaluate the power of traits, phylogeny and time since description (reflecting species-level knowledge) to explain and predict their international transport, maximum latitude and host breadth using Bayesian phylogenetic generalised linear mixed models.In the best-performing models, traits, phylogeny and time since description together explained up to 90%, 97% and 87% of variance in number of countries reached, latitudinal limits and host range, respectively. Traits and phylogeny together explained up to 26%, 41% and 34% of variance in the number of countries reached, maximum latitude and host plant families affected, respectively, but time since description had the strongest effect.Root-attacking species were reported in more countries, and on more host plant families than foliar-attacking species. Host generalist pathogens had thicker-walled resting structures (stress-tolerant oospores) and faster growth rates at their optima. Cold-tolerant species are reported in more countries and at higher latitudes, though more accurate interspecific empirical data are needed to confirm this finding. Policy implications. We evaluate the potential of an evolutionary trait-based framework to support horizon-scanning approaches for identifying pathogens with greater potential for global-scale impacts. Potential future threats from Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x incrassata, P. amnicola and P. aquimorbida, which are recently described, possibly under-reported species, with similar traits and/or phylogenetic proximity to other high-impact species. Priority traits to measure for emerging species may be thermal minima, oospore wall index and growth rate at optimum temperature. Trait-based horizon-scanning approaches would benefit from the development of international and cross-sectoral collaborations to deliver centralised databases incorporating pathogen distributions, traits and phylogeny.

2.
Phytopathology ; 107(12): 1532-1540, 2017 12.
Article En | MEDLINE | ID: mdl-28742458

Phytophthora austrocedri is causing widespread mortality of Austrocedrus chilensis in Argentina and Juniperus communis in Britain. The pathogen has also been isolated from J. horizontalis in Germany. Isolates from Britain, Argentina, and Germany are homothallic, with no clear differences in the dimensions of sporangia, oogonia, or oospores. Argentinian and German isolates grew faster than British isolates across a range of media and had a higher temperature tolerance, although most isolates, regardless of origin, grew best at 15°C and all isolates were killed at 25°C. Argentinian and British isolates caused lesions when inoculated onto both A. chilensis and J. communis; however, the Argentinian isolate caused longer lesions on A. chilensis than on J. communis and vice versa for the British isolate. Genetic analyses of nuclear and mitochondrial loci showed that all British isolates are identical. Argentinian isolates and the German isolate are also identical but differ from the British isolates. Single-nucleotide polymorphisms are shared between the British and Argentinian isolates. We concluded that British isolates and Argentinian isolates conform to two distinct clonal lineages of P. austrocedri founded from the same as-yet-unidentified source population. These lineages should be recognized and treated as separate risks by international plant health legislation.


Cupressaceae/microbiology , Genetic Variation , Juniperus/microbiology , Phytophthora/genetics , Plant Diseases/microbiology , Argentina , Forests , Phylogeny , Phytophthora/isolation & purification , Phytophthora/ultrastructure , Polymorphism, Single Nucleotide/genetics , Sporangia , United Kingdom
3.
Sci Rep ; 6: 29226, 2016 07 07.
Article En | MEDLINE | ID: mdl-27384974

Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen.


Armillaria/genetics , Green Fluorescent Proteins/genetics , Introns/genetics , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Agaricus/genetics , Inclusion Bodies/genetics , Mycelium/genetics , Phanerochaete/genetics
4.
Fungal Biol ; 119(10): 859-869, 2015 Oct.
Article En | MEDLINE | ID: mdl-26399182

Armillaria mellea is a serious pathogen of horticultural and agricultural systems in Europe and North America. The lack of a reliable in vitro fruiting system for heterothallic A. mellea has hindered research and required dependence on intermittently available wild-collected basidiospores of endemic genotypes, necessitating the use of variable genetic material in transformation studies. Here we describe a reliable, reproducible in vitro fruiting method for heterothallic A. mellea from the western US. Isolates and growth conditions were evaluated to determine effective fruiting conditions. Following medium colonisation for 4 weeks, cultures were incubated under warm/bright conditions for 4-6 weeks before incubation in dim/cool conditions. Primordia emerged within 3-4 weeks following a temperature decrease and this was most efficient when coupled with a light reduction. Basidiocarps matured within 3-4 weeks and produced viable basidiospores. Agrobacterium tumefaciens and vectors were evaluated by transformation of in vitro-produced basidiospores and a versatile transformation vector was constructed to simplify promoter and marker gene exchange using homologous recombination in yeast. Fruiting bodies and viable basidiospores of A. mellea have been reliably produced in vitro which, coupled with the enhanced knowledge of suitable A. tumefaciens strains and vectors for transformation, will assist future genetic research into this important pathogen.


Agrobacterium tumefaciens/genetics , Armillaria/growth & development , Fruiting Bodies, Fungal/growth & development , Gene Transfer Techniques , Genetics, Microbial/methods , Mycology/methods , Transformation, Genetic , Armillaria/genetics , Armillaria/isolation & purification , Gene Transfer, Horizontal , In Vitro Techniques/methods , Light , Temperature , United States
5.
Mycologia ; 106(3): 431-47, 2014.
Article En | MEDLINE | ID: mdl-24871599

A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and ß-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate.


Phytophthora/isolation & purification , Plant Diseases/microbiology , Plants/microbiology , Australia , Fruit/microbiology , Molecular Sequence Data , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Phytophthora/growth & development , Spores/growth & development , United States
6.
Mycol Res ; 110(Pt 6): 672-85, 2006 Jun.
Article En | MEDLINE | ID: mdl-16765033

Three species of powdery mildew, Erysiphe elevata, E. catalpae, and Neoerysiphe galeopsidis were identified on Catalpa species in England in 2004. A new disease record, N. galeopsidis was the first Catalpa mildew to appear (in June), but it was later out-competed by E. elevata that caused the most serious damage. Both mildews also attacked C. speciosa, C. xerubescens and a new host, xChitalpa tashkentensis, a Chilopsis xCatalpa hybrid. No powdery mildew was detected on C. bungei, C. ovata, or C. fargesii. Identifications of the pathogens using morphological data were fully supported by DNA analysis yielding characteristic rDNA ITS sequences. The sequences placed E. catalpae within the E. aquilegiae clade. The sequences for E. elevata from southern England and France closely matched those from Hungary and North America, confirming the recent spread of this pathogen from the USA. It eventually overran N. galeopsidis and its sudden appearance in the UK could be due to greater aggressiveness and to the production of more ascomata especially during autumns with delayed leaf fall as in 2001. A further species, Oidium hiratae (i.e. Podosphaera sp.), though described from a 1978 UK collection on C. bignonioides, was not detected in the field.


Bignoniaceae/microbiology , Phylogeny , Plant Diseases/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/growth & development , Ascomycota/ultrastructure , DNA, Fungal/analysis , Microscopy, Electron, Scanning , Molecular Sequence Data , Plant Leaves/microbiology , Sequence Analysis, DNA , United Kingdom
7.
Mycol Res ; 108(Pt 7): 759-65, 2004 Jul.
Article En | MEDLINE | ID: mdl-15446708

In an attempt to clarify the relationship between fungi classified as Ophiostoma minus, but of different geographic origins and mating systems, sequencing of the 5.8S and ITS 2 rDNA, and beta-tubulin gene was carried out. The beta-tubulin gene was highly informative, supporting the sub-division of O. minus into two groups based on geographic origin. Furthermore, isolates previously classified as O. pseudotsugae were confirmed as being clearly distinct from O. minus. However, sequencing did not reveal any polymorphisms between isolates with homothallic as compared to heterothallic mating systems. This was supported by crosses using methylbenzamidazole-2-yl carbamate nuclear markers which showed that hybridisation between isolates of different mating systems was possible. However, we propose that different mating systems may still signal a divergence of isolates of O. minus.


Ascomycota/classification , Ascomycota/genetics , Carbamates , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Ascomycota/drug effects , Ascomycota/isolation & purification , Benzimidazoles/pharmacology , Crosses, Genetic , Genes, Fungal , Phylogeny , RNA, Fungal/genetics , RNA, Ribosomal, 5.8S/genetics , Tubulin/genetics
8.
Mycologia ; 94(6): 980-97, 2002.
Article En | MEDLINE | ID: mdl-21156571

A leaf and twig blight disease of Buxus spp. was found to be associated with a new species of Cylindrocladium. The novel species status was confirmed using morphological characters, sequencing of the ribosomal 5.8S RNA gene and the flanking internal transcribed spacers (ITS), the ß-tubulin gene, and the high mobility group (HMG) of the MAT2 mating type gene. Cylindrocladium buxicola is proposed as a new name. Fifteen isolates from the UK and one isolate from New Zealand were paired in all combinations but no fertile perithecia were obtained suggesting that C. buxicola is heterothallic and all isolates belonged to one mating type. AFLP analysis showed that the isolates collected in the UK and New Zealand are genetically homogenous. Phylogenetic analyses indicated that this species falls within a new lineage.

...