Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Viruses ; 16(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066199

RESUMEN

Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.


Asunto(s)
Coinfección , Inflamación , Macaca mulatta , Malaria , Neutrófilos , Plasmodium , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Coinfección/tratamiento farmacológico , Coinfección/parasitología , Coinfección/virología , Malaria/tratamiento farmacológico , Malaria/inmunología , Malaria/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Proyectos Piloto , Neutrófilos/inmunología , Antirretrovirales/uso terapéutico , Carga Viral , Biomarcadores/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología
2.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791393

RESUMEN

Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the periphery and brain. Subclinical levels of LPS were injected intraperitoneally into mice to investigate its impacts on neutrophil frequency and activation. Neutrophil activation, as measured by CD11b expression, was higher in LPS-injected mice compared to saline-injected mice after 4 weeks but not 8 weeks of injections. Neutrophil frequency and activation increased in the periphery 4-12 h and 4-8 h after the fourth and final injection, respectively. Increased levels of G-CSF, TNFa, IL-6, and CXCL2 were observed in the plasma along with increased neutrophil elastase, a marker of neutrophil extracellular traps, peaking 4 h following the final injection. Neutrophil activation was increased in the brain of LPS-injected mice when compared to saline-injected mice 4-8 h after the final injection. These results indicate that subclinical levels of peripheral LPS induces neutrophil activation in the periphery and brain. This model of chronic low-level systemic inflammation could be used to understand how neutrophils may act as mediators of the periphery-brain axis of inflammation with age and/or in mouse models of neurodegenerative or neuroinflammatory disease.


Asunto(s)
Encéfalo , Lipopolisacáridos , Activación Neutrófila , Neutrófilos , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Proyectos Piloto , Modelos Animales de Enfermedad , Masculino , Inflamación/metabolismo , Inflamación/inducido químicamente , Ratones Endogámicos C57BL , Factor Estimulante de Colonias de Granulocitos/metabolismo , Elastasa de Leucocito/metabolismo
3.
Res Sq ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37886552

RESUMEN

Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the brain. Subclinical levels of LPS were injected intraperitoneally into mice to investigate impacts on neutrophil frequency and activation. Neutrophil activation, as measured by CD11b expression, peaked in the periphery after 4 weeks of weekly injections. Neutrophil frequency and activation increased in the periphery 4-12 hours and 4-8 hours after the fourth and final injection, respectively. Increased levels of G-CSF, TNFa, IL-6, and CXCL2 were observed in the plasma along with increased neutrophil elastase, a marker of neutrophil extracellular traps, peaking 4 hours following the final injection. Neutrophils and neutrophil activation were increased in the brain of LPS injected mice when compared to saline-injected mice 4 hours and 4-8 hours after the final injection, respectively. These results indicate that subclinical levels of peripheral LPS induces neutrophil activation in the periphery and brain. This model of chronic low-level systemic inflammation could be used to understand how neutrophils may act as mediators of the periphery-brain axis of inflammation with age and/or in mouse models of neurodegenerative or neuroinflammatory disease.

4.
Front Immunol ; 14: 1123149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936930

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia in the United States. Sporadic or late-onset AD remains incompletely understood, with age as the current greatest risk factor. Inflammation in general and neutrophils, a potent mediator of inflammation, have been shown to exacerbate AD associated dementia. This review explores the latest research on neutrophils in AD mouse models and in human cohort studies and discusses current gaps in research and needs for future studies. AD mouse models have shown neutrophil chemotactic migration towards amyloid beta plaques in the brain. Capillary blood flow stalling decreases blood perfusion to associated brain regions and mouse studies have demonstrated that anti-Ly6G antibodies lead to a decrease in capillary blood flow stalling and memory improvement. Several recent transcriptomic studies of blood and brain tissue from persons with AD have shown an upregulation in neutrophil-related genes, and studies have demonstrated neutrophil involvement in brain capillary adhesion, blood brain barrier breaching, myeloperoxidase release, and the propensity for neutrophil extracellular trap release in AD. Neutrophil-derived inflammation and regulation are a potential potent novel therapeutic target for AD progression. Future studies should further investigate neutrophil functionality in AD. In addition, other aspects of AD that may impact neutrophils including the microbiome and the APOE4 allele should be studied.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Neutrófilos , Encéfalo/metabolismo , Inflamación/complicaciones
5.
BMC Bioinformatics ; 24(1): 22, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658484

RESUMEN

BACKGROUND: Microbial communities are known to be closely related to many diseases, such as obesity and HIV, and it is of interest to identify differentially abundant microbial species between two or more environments. Since the abundances or counts of microbial species usually have different scales and suffer from zero-inflation or over-dispersion, normalization is a critical step before conducting differential abundance analysis. Several normalization approaches have been proposed, but it is difficult to optimize the characterization of the true relationship between taxa and interesting outcomes.  RESULTS: To avoid the challenge of picking an optimal normalization and accommodate the advantages of several normalization strategies, we propose an omnibus approach. Our approach is based on a Cauchy combination test, which is flexible and powerful by aggregating individual p values. We also consider a truncated test statistic to prevent substantial power loss. We experiment with a basic linear regression model as well as recently proposed powerful association tests for microbiome data and compare the performance of the omnibus approach with individual normalization approaches. Experimental results show that, regardless of simulation settings, the new approach exhibits power that is close to the best normalization strategy, while controling the type I error well.  CONCLUSIONS: The proposed omnibus test releases researchers from choosing among various normalization methods and it is an aggregated method that provides the powerful result to the underlying optimal normalization, which requires tedious trial and error. While the power may not exceed the best normalization, it is always much better than using a poor choice of normalization.


Asunto(s)
Microbiota , Simulación por Computador , Modelos Lineales , Investigación
6.
Front Reprod Health ; 4: 876729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303633

RESUMEN

The role of neutrophils relative to vaginal dysbiosis is unclear. We hypothesize that bacterial vaginosis (BV)-associated bacteria may induce the activation and accumulation of mucosal neutrophils within the female reproductive tract (FRT), resulting in epithelial barrier damage. We collected endocervical cytobrushes from women with and without BV and assessed bacteria community type and frequency/functional phenotypes of neutrophils. We performed in vitro whole blood co-cultures with BV-associated bacteria and healthy vaginal commensals and assessed their impact on epithelial integrity using transepithelial electrical resistance. We demonstrated increased neutrophil frequency (p < 0.0001), activation (p < 0.0001), and prolonged lifespan (p < 0.0001) in the cytobrushes from women with non-Lactobacillus dominant (nLD) communities. Our in vitro co-cultures confirmed these results and identified significant barrier damage in the presence of neutrophils and G. vaginalis. Here, we demonstrate that BV-associated bacteria induce neutrophil activation and increase lifespan, potentially causing accumulation in the FRT and epithelial barrier damage.

7.
J Clin Invest ; 131(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34160366

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) occurs during or recently following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is characterized by persistent fever, inflammation, and severe illness requiring hospitalization. The majority of patients with MIS-C also present with gastrointestinal (GI) symptoms, including abdominal pain, vomiting, and diarrhea. In this issue of the JCI, Yonker, Gilboa, and colleagues identified zonulin as a biomarker of GI permeability in children with MIS-C and present the results of an intriguing proof-of-concept study indicating that zonulin may represent a potential therapeutic target for MIS-C treatment and prevention. Their findings suggest that intestinal mucosal dysfunction and epithelial barrier breakdown may represent a biological mechanism underlying the development of MIS-C in SARS-CoV-2-infected children.


Asunto(s)
COVID-19 , Biomarcadores , Niño , Haptoglobinas , Humanos , Precursores de Proteínas , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica
8.
NPJ Vaccines ; 6(1): 34, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707443

RESUMEN

An effective vaccine to prevent HIV transmission has not yet been achieved. Modulation of the microbiome via probiotic therapy has been suggested to result in enhanced mucosal immunity. Here, we evaluated whether probiotic therapy could improve the immunogenicity and protective efficacy of SIV/HIV vaccination. Rhesus macaques were co-immunized with an SIV/HIV DNA vaccine via particle-mediated epidermal delivery and an HIV protein vaccine administered intramuscularly with Adjuplex™ adjuvant, while receiving daily oral Visbiome® probiotics. Probiotic therapy alone led to reduced frequencies of colonic CCR5+ and CCR6+ CD4+ T cells. Probiotics with SIV/HIV vaccination led to similar reductions in colonic CCR5+ CD4+ T cell frequencies. SIV/HIV-specific T cell and antibody responses were readily detected in the periphery of vaccinated animals but were not enhanced with probiotic treatment. Combination probiotics and vaccination did not impact rectal SIV/HIV target populations or reduce the rate of heterologous SHIV acquisition during the intrarectal challenge. Finally, post-infection viral kinetics were similar between all groups. Thus, although probiotics were well-tolerated when administered with SIV/HIV vaccination, vaccine-specific responses were not significantly enhanced. Additional work will be necessary to develop more effective strategies of microbiome modulation in order to enhance mucosal vaccine immunogenicity and improve protective immune responses.

9.
AIDS Res Hum Retroviruses ; 37(7): 510-522, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33446027

RESUMEN

In Sub-Saharan Africa, young women 15-24 years of age account for nearly 30% of all new HIV infections, however, biological and epidemiological factors underlying this disproportionate infection rate are unclear. In this study, we assessed biological contributors of SIV/HIV susceptibility in the female genital tract (FGT) using adolescent (n = 9) and adult (n = 10) pigtail macaques (PTMs) with weekly low-dose intravaginal challenges of SIV. Immunological variables were captured in vaginal tissue of PTMs by flow cytometry and cytokine assays. Vaginal biopsies were profiled by proteomic analysis. The vaginal microbiome was assessed by 16S rRNA sequencing. We were powered to detect a 2.2-fold increase in infection rates between age groups, however, we identified no significant differences in susceptibility. This model cannot capture epidemiological factors or may not best represent biological differences of HIV susceptibility. No immune cell subsets measured were significantly different between groups. Inflammatory marker MCP-1 was significantly higher (adj p = .02), and sCD40L trended higher (adj p = .06) in vaginal cytobrushes of adults. Proteomic analysis of vaginal biopsies showed no significant (adj p < .05) protein or pathway differences between groups. Vaginal microbiomes were not significantly different between groups. No differences were observed between age groups in this PTM model, however, these animals may not reflect biological factors contributing to HIV risk such as those found in their human counterparts. This model is therefore not appropriate to explore human adolescent differences in HIV risk. Young women remain a key population at risk for HIV infection, and there is still a need for comprehensive assessment and intervention strategies for epidemic control of this uniquely vulnerable population.


Asunto(s)
Infecciones por VIH , Microbiota , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Adolescente , Adulto , Animales , Femenino , Genitales Femeninos , Humanos , Macaca nemestrina , Proteómica , ARN Ribosómico 16S/genética , Virus de la Inmunodeficiencia de los Simios/genética
10.
AIDS ; 34(10): 1451-1460, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675558

RESUMEN

OBJECTIVES: The aim of this study was to examine the relationship between gut microbial communities in HIV-infected individuals on suppressive antiretroviral therapy (cART), and the peripheral HIV-Gag-specific CD8 T-cell responses before and after ex-vivo immune checkpoint blockade (ICB). DESIGN: Thirty-four HIV-seropositive, 10 HIV-seronegative and 12 HIV-seropositive receiving faecal microbiota transplant (FMT) participants were included. Gut microbial communities, peripheral and gut associated negative checkpoint receptors (NCRs) and peripheral effector functions were assessed. METHODS: Bacterial 16s rRNA sequencing for gut microbiome study and flow-based assays for peripheral and gut NCR and their cognate ligand expression, including peripheral HIV-Gag-specific CD8 T-cell responses before and after ex-vivo anti-PD-L1 and anti-TIGIT ICB were performed. RESULTS: Fusobacteria abundance was significantly higher in HIV-infected donors compared to uninfected controls. In HIV-infected participants receiving Fusobacteria-free FMT, Fusobacteria persisted up to 24 weeks in stool post FMT. PD-1 TIGIT and their ligands were expanded in mucosal vs. peripheral T cells and dendritic cells, respectively. PD-L1 and TIGIT blockade significantly increased the magnitude of peripheral anti-HIV-Gag-specific CD8 T-cell responses. Higher gut Fusobacteria abundance was associated with lower magnitude of peripheral IFN-γ+ HIV-Gag-specific CD8 T-cell responses following ICB. CONCLUSION: The gut colonization of Fusobacteria in HIV infection is persistent and may influence anti-HIV T-cell immunity to PD-1 or TIGIT blockade. Strategies modulating Fusobacteria colonization may elicit a favourable mucosal immune landscape to enhance the efficacy of ICB for HIV cure.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Microbioma Gastrointestinal , Infecciones por VIH/microbiología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Adulto , Anciano , Fármacos Anti-VIH/uso terapéutico , Trasplante de Microbiota Fecal , Femenino , Fusobacterias/aislamiento & purificación , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Minorías Sexuales y de Género
12.
Mucosal Immunol ; 13(3): 471-480, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31797911

RESUMEN

The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short-chain fatty acids (SCFAs) and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics: enrofloxacin, cephalexin, paromomycin, and clindamycin, in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in the stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities associated with specific alterations in mucosal and systemic immunity.


Asunto(s)
Antibacterianos/farmacología , Colon , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Bacterias , Biodiversidad , Biomarcadores , Esquema de Medicación , Monitoreo de Drogas , Ácidos Grasos Volátiles/metabolismo , Heces/citología , Heces/microbiología , Cromatografía de Gases y Espectrometría de Masas , Inmunofenotipificación , Mucosa Intestinal/patología , Macaca mulatta , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Distribución Tisular
13.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31217249

RESUMEN

Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.


Asunto(s)
Ingeniería Genética/métodos , VIH/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Macaca mulatta/virología , Modelos Biológicos , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral/inmunología , Replicación Viral/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
14.
PLoS Pathog ; 15(4): e1007672, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30973942

RESUMEN

Gastrointestinal (GI) mucosal dysfunction predicts and likely contributes to non-infectious comorbidities and mortality in HIV infection and persists despite antiretroviral therapy. However, the mechanisms underlying this dysfunction remain incompletely understood. Neutrophils are important for containment of pathogens but can also contribute to tissue damage due to their release of reactive oxygen species and other potentially harmful effector molecules. Here we used a flow cytometry approach to investigate increased neutrophil lifespan as a mechanism for GI neutrophil accumulation in chronic, treated HIV infection and a potential role for gastrointestinal dysbiosis. We report that increased neutrophil survival contributes to neutrophil accumulation in colorectal biopsy tissue, thus implicating neutrophil lifespan as a new therapeutic target for mucosal inflammation in HIV infection. Additionally, we characterized the intestinal microbiome of colorectal biopsies using 16S rRNA sequencing. We found that a reduced Lactobacillus: Prevotella ratio associated with neutrophil survival, suggesting that intestinal bacteria may contribute to GI neutrophil accumulation in treated HIV infection. Finally, we provide evidence that Lactobacillus species uniquely decrease neutrophil survival and neutrophil frequency in vitro, which could have important therapeutic implications for reducing neutrophil-driven inflammation in HIV and other chronic inflammatory conditions.


Asunto(s)
Colon/inmunología , Microbioma Gastrointestinal/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inflamación/inmunología , Neutrófilos/inmunología , Recto/inmunología , Colon/microbiología , Colon/patología , Femenino , Infecciones por VIH/virología , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , Neutrófilos/citología , Recto/microbiología , Recto/patología
15.
Mucosal Immunol ; 11(5): 1429-1440, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29907866

RESUMEN

HIV and pathogenic SIV infection are characterized by mucosal dysfunction including epithelial barrier damage, loss of Th17 cells, neutrophil infiltration, and microbial translocation with accompanying inflammation. However, it is unclear how and when these contributing factors occur relative to one another. In order to determine whether any of these features initiates the cycle of damage, we longitudinally evaluated the kinetics of mucosal and systemic T-cell activation, microbial translocation, and Th17 cell and neutrophil frequencies following intrarectal SIV infection of rhesus macaques. We additionally assessed the colon proteome to elucidate molecular pathways altered early after infection. We demonstrate increased T-cell activation (HLA-DR+) beginning 3-14 days post-SIV challenge, reduced peripheral zonulin 3-14 days post-SIV, and evidence of microbial translocation 14 days post-SIV. The onset of mucosal dysfunction preceded peripheral and mucosal Th17 depletion, which occurred 14-28 days post-SIV, and gut neutrophil accumulation was not observed. Proteins involved in epithelial structure were downregulated 3 days post-SIV followed by an upregulation of immune proteins 14 days post-SIV. These data demonstrate that immune perturbations such as Th17 loss and neutrophil infiltration occur after alterations to epithelial structural protein pathways, suggesting that epithelial damage occurs prior to widespread immune dysfunction.


Asunto(s)
Colon/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Colon/inmunología , Colon/virología , Regulación hacia Abajo/inmunología , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Estudios Longitudinales , Activación de Linfocitos/inmunología , Macaca mulatta , Masculino , Neutrófilos/inmunología , Neutrófilos/patología , Neutrófilos/virología , Células Th17/inmunología , Células Th17/virología , Regulación hacia Arriba/inmunología
16.
Curr HIV/AIDS Rep ; 15(1): 1-10, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29516266

RESUMEN

PURPOSE OF REVIEW: We summarize what is known about neutrophils in HIV infection, focusing on their potential roles in HIV protection, acquisition, and pathogenesis. RECENT FINDINGS: Recent studies have demonstrated that neutrophil-associated proteins and cytokines in genital tissue pre-infection associate with HIV acquisition. However, recent in vivo assessment of highly exposed seronegative individuals and in vitro studies of anti-HIV functions of neutrophils add to older literature evidence that neutrophils may be important in a protective response to HIV infection. Neutrophils are important for containment of pathogens but can also contribute to tissue damage due to their release of reactive oxygen species, proteases, and other potentially harmful effector molecules. Overall, there is a clear evidence for both helpful and harmful roles of neutrophils in HIV acquisition and pathogenesis. Further study, particularly of tissue neutrophils, is needed to elucidate the kinetics, phenotype, and functionality of neutrophils in HIV infection to better understand this dichotomy.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/patología , VIH-1/inmunología , Membrana Mucosa/patología , Neutrófilos/inmunología , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo , Infecciones por VIH/metabolismo , Humanos , Inmunidad Mucosa/inmunología , Membrana Mucosa/inmunología
17.
Clin Infect Dis ; 66(12): 1872-1882, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471387

RESUMEN

Background: Cannabis is a widely used drug in the United States, and the frequency of cannabis use in the human immunodeficiency virus (HIV)-infected population is disproportionately high. Previous human and macaque studies suggest that cannabis may have an impact on plasma viral load; however, the relationship between cannabis use and HIV-associated systemic inflammation and immune activation has not been well defined. Methods: The impact of cannabis use on peripheral immune cell frequency, activation, and function was assessed in 198 HIV-infected, antiretroviral-treated individuals by flow cytometry. Individuals were categorized into heavy, medium, or occasional cannabis users or noncannabis users based on the amount of the cannabis metabolite 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) detected in plasma by mass spectrometry. Results: Heavy cannabis users had decreased frequencies of human leukocyte antigen (HLA)-DR+CD38+CD4+ and CD8+ T-cell frequencies, compared to frequencies of these cells in non-cannabis-using individuals. Heavy cannabis users had decreased frequencies of intermediate and nonclassical monocyte subsets, as well as decreased frequencies of interleukin 23- and tumor necrosis factor-α-producing antigen-presenting cells. Conclusions: While the clinical implications are unclear, our findings suggest that cannabis use is associated with a potentially beneficial reduction in systemic inflammation and immune activation in the context of antiretroviral-treated HIV infection.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Inmunidad Innata/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Abuso de Marihuana/inmunología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Dronabinol/análogos & derivados , Dronabinol/sangre , Femenino , Citometría de Flujo , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Carga Viral/efectos de los fármacos
18.
PLoS Pathog ; 14(2): e1006871, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29466439

RESUMEN

Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFß). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals.


Asunto(s)
Antirretrovirales/administración & dosificación , Inflamación/patología , Hígado/patología , Macrófagos/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Carga Viral , Animales , Antirretrovirales/farmacología , Recuento de Células , Células Cultivadas , Quimioterapia Combinada , Humanos , Inflamación/tratamiento farmacológico , Inflamación/virología , Hígado/inmunología , Hígado/virología , Macaca mulatta , Macrófagos/efectos de los fármacos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
19.
FEMS Microbiol Lett ; 364(23)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29088370

RESUMEN

Antibiotic therapies are known to disrupt gastrointestinal (GI) bacterial communities. HIV and pathogenic simian immunodeficiency virus (SIV) infections have also been associated with disrupted GI bacterial communities. We administered a combination antibiotic therapy to six SIV-infected rhesus macaques and collected colon biopsies, stool samples and rectal swabs before and after antibiotics, and evaluated the bacterial communities at each sample site using high-throughput 16S rRNA gene sequencing. The colon mucosa and stool samples displayed different bacterial communities, while the rectal swabs showed a mixture of the mucosal and stool-associated bacteria. Antibiotics disrupted the native bacterial communities at each sample site. The colon mucosa showed depleted abundances of the dominant Helicobacteraceae, while we found depleted abundances of the dominant Ruminococcaceae sp. in the stool. The rectal swabs showed similar trends as the colon mucosa, but were more variable. After the antibiotic treatment, there were increased abundances of similar taxa of facultative anaerobic bacteria, including Lactobacillaceae and Enterobacteriaceae at each sample site.


Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Animales , Carga Bacteriana/efectos de los fármacos , Colon/microbiología , Heces/microbiología , Microbioma Gastrointestinal/genética , Macaca mulatta , Masculino , Recto/microbiología
20.
EBioMedicine ; 14: 97-111, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27919754

RESUMEN

HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Membrana Mucosa/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , VIH-1/genética , Humanos , Inmunidad Mucosa , Inmunofenotipificación , Leucocitos/inmunología , Leucocitos/metabolismo , Macaca mulatta , Membrana Mucosa/virología , Pruebas de Neutralización , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vagina/inmunología , Vagina/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA