Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2559, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297116

RESUMEN

Formalin-fixed, paraffin-embedded (FFPE) tissue specimens are routinely used in pathological diagnosis, but their large number of artifactual mutations complicate the evaluation of companion diagnostics and analysis of next-generation sequencing data. Identification of variants with low allele frequencies is challenging because existing FFPE filtering tools label all low-frequency variants as artifacts. To address this problem, we aimed to develop DEEPOMICS FFPE, an AI model that can classify a true variant from an artifact. Paired whole exome sequencing data from fresh frozen and FFPE samples from 24 tumors were obtained from public sources and used as training and validation sets at a ratio of 7:3. A deep neural network model with three hidden layers was trained with input features using outputs of the MuTect2 caller. Contributing features were identified using the SHapley Additive exPlanations algorithm and optimized based on training results. The performance of the final model (DEEPOMICS FFPE) was compared with those of existing models (MuTect filter, FFPolish, and SOBDetector) by using well-defined test datasets. We found 41 discriminating properties for FFPE artifacts. Optimization of property quantification improved the model performance. DEEPOMICS FFPE removed 99.6% of artifacts while maintaining 87.1% of true variants, with an F1-score of 88.3 in the entire dataset not used for training, which is significantly higher than those of existing tools. Its performance was maintained even for low-allele-fraction variants with a specificity of 0.995, suggesting that it can be used to identify subclonal variants. Different from existing methods, DEEPOMICS FFPE identified most of the sequencing artifacts in the FFPE samples while retaining more of true variants, including those of low allele frequencies. The newly developed tool DEEPOMICS FFPE may be useful in designing capture panels for personalized circulating tumor DNA assay and identifying candidate neoepitopes for personalized vaccine design. DEEPOMICS FFPE is freely available on the web ( http://deepomics.co.kr/ffpe ) for research.


Asunto(s)
Artefactos , Formaldehído , Adhesión en Parafina , Fijación del Tejido/métodos , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Redes Neurales de la Computación
2.
Cell Rep ; 36(10): 109671, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496258

RESUMEN

Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.


Asunto(s)
Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Schizosaccharomyces/metabolismo , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
3.
Methods Enzymol ; 612: 489-504, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30502955

RESUMEN

The RNA polymerase II carboxyl-terminal domain (CTD) consists of tandem repeats of consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Dynamic posttranslational modifications of the CTD generate a CTD code crucial for the cotranscriptional recruitment of factors that control transcription, chromatin modification, and RNA processing. Analysis of CTD phosphorylation by ChIP (Chromatin ImmunoPrecipitation) coupled with high-throughput DNA sequencing (ChIP-seq) is a powerful tool to investigate the changes in CTD phosphorylation during the transcription cycle. In this chapter, we describe a ChIP-seq protocol to profile the different CTD phospho-marks in fission yeast. Using this protocol, we have found that Tyr1P, Ser2P, and Thr4P signals are highest at gene 3' ends, whereas Ser5P is enriched across the gene bodies.


Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Inmunoprecipitación de Cromatina , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcripción Genética/genética
4.
Cell Rep ; 25(1): 259-269.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282034

RESUMEN

Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.


Asunto(s)
Factores de Elongación de Péptidos/genética , ARN Polimerasa II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/genética , Terminación de la Transcripción Genética/fisiología , Transcripción Genética/genética
5.
Nucleic Acids Res ; 46(11): 5426-5440, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29618061

RESUMEN

It is important to accurately regulate the expression of genes involved in development and environmental response. In the fission yeast Schizosaccharomyces pombe, meiotic genes are tightly repressed during vegetative growth. Despite being embedded in heterochromatin these genes are transcribed and believed to be repressed primarily at the level of RNA. However, the mechanism of facultative heterochromatin formation and the interplay with transcription regulation is not understood. We show genome-wide that HDAC-dependent histone deacetylation is a major determinant in transcriptional silencing of facultative heterochromatin domains. Indeed, mutation of class I/II HDACs leads to increased transcription of meiotic genes and accumulation of their mRNAs. Mechanistic dissection of the pho1 gene where, in response to phosphate, transient facultative heterochromatin is established by overlapping lncRNA transcription shows that the Clr3 HDAC contributes to silencing independently of SHREC, but in an lncRNA-dependent manner. We propose that HDACs promote facultative heterochromatin by establishing alternative transcriptional silencing.


Asunto(s)
Fosfatasa Ácida/genética , Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , ARN Largo no Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Ensamble y Desensamble de Cromatina/genética , Heterocromatina/metabolismo , Meiosis/genética , Procesamiento Proteico-Postraduccional/genética , Interferencia de ARN
6.
Nat Commun ; 8: 14861, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28367989

RESUMEN

Termination of RNA polymerase II (Pol II) transcription is an important step in the transcription cycle, which involves the dislodgement of polymerase from DNA, leading to release of a functional transcript. Recent studies have identified the key players required for this process and showed that a common feature of these proteins is a conserved domain that interacts with the phosphorylated C-terminus of Pol II (CTD-interacting domain, CID). However, the mechanism by which transcription termination is achieved is not understood. Using genome-wide methods, here we show that the fission yeast CID-protein Seb1 is essential for termination of protein-coding and non-coding genes through interaction with S2-phosphorylated Pol II and nascent RNA. Furthermore, we present the crystal structures of the Seb1 CTD- and RNA-binding modules. Unexpectedly, the latter reveals an intertwined two-domain arrangement of a canonical RRM and second domain. These results provide important insights into the mechanism underlying eukaryotic transcription termination.


Asunto(s)
Secuencia Conservada , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Terminación de la Transcripción Genética , Secuencia de Bases , Supervivencia Celular , Cristalografía por Rayos X , Genes Fúngicos , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Sistemas de Lectura Abierta/genética , Fosforilación , Mutación Puntual/genética , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Relación Estructura-Actividad , Especificidad por Sustrato
7.
J Biol Chem ; 291(25): 13229-42, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27076633

RESUMEN

The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/metabolismo , ARN de Hongos/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regulación Fúngica de la Expresión Génica , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética
8.
J Biol Chem ; 288(51): 36676-90, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24196955

RESUMEN

The RNA polymerase II (RNApII) C-terminal domain (CTD)-interacting domain (CID) proteins are involved in two distinct RNApII termination pathways and recognize different phosphorylated forms of CTD. To investigate the role of differential CTD-CID interactions in the choice of termination pathway, we altered the CTD-binding specificity of Nrd1 by domain swapping. Nrd1 with the CID from Rtt103 (Nrd1(CID(Rtt103))) causes read-through transcription at many genes, but can also trigger termination where multiple Nrd1/Nab3-binding sites and the Ser(P)-2 CTD co-exist. Therefore, CTD-CID interactions target specific termination complexes to help choose an RNApII termination pathway. Interactions of Nrd1 with both CTD and nascent transcripts contribute to efficient termination by the Nrd1 complex. Surprisingly, replacing the Nrd1 CID with that from Rtt103 reduces binding to Rrp6/Trf4, and RNA transcripts terminated by Nrd1(CID(Rtt103)) are predominantly processed by core exosome. Thus, the Nrd1 CID couples Ser(P)-5 CTD not only to termination, but also to RNA processing by the nuclear exosome.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Secuencia de Bases , Sitios de Unión , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Biotechnol Lett ; 34(2): 303-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22009569

RESUMEN

The ATX1 deletion strain of Saccharomyces cerevisiae is more resistant to Cd(2+) than the wild-type. To investigate the function of Atx1 in Cd(2+) toxicity, we used a metal-binding assay to study the interaction between Atx1 and Cd(2+) in vitro. Using circular dichroism and two-hybrid analyses, we found that Atx1 can bind Cd(2+) specifically and that Cd(2+) binding to Atx1 affects the physical interaction between Atx1 and Ccc2. These results imply that Atx1 delivers Cd(2+) to Ccc2 and that this delivery is, at least in part, responsible for Cd(2+) toxicity in S. cerevisiae.


Asunto(s)
Cadmio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cationes Bivalentes/metabolismo , Mapeo de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Dicroismo Circular , Proteínas Transportadoras de Cobre , Unión Proteica , Técnicas del Sistema de Dos Híbridos
10.
Biochem J ; 431(2): 257-65, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20670216

RESUMEN

Cadmium is a toxic metal and the mechanism of its toxicity has been studied in various model systems from bacteria to mammals. We employed Saccharomyces cerevisiae as a model system to study cadmium toxicity at the molecular level because it has been used to identify the molecular mechanisms of toxicity found in higher organisms. cDNA microarray and Northern blot analyses revealed that cadmium salts inhibited the expression of genes related to copper metabolism. Western blotting, Northern blotting and chromatin immunoprecipitation experiments indicated that CTR1 expression was inhibited at the transcriptional level through direct inhibition of the Mac1 transcriptional activator. The decreased expression of CTR1 results in cellular copper deficiency and inhibition of Fet3 activity, which eventually impairs iron uptake. In this way, cadmium exhibits a negative effect on both iron and copper homoeostasis.


Asunto(s)
Cadmio/toxicidad , Cobre/metabolismo , Homeostasis/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Regulón/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/genética , Transactivadores/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Cobre/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos/genética , Hierro/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Regulón/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Curr Genet ; 55(6): 593-600, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19756628

RESUMEN

The function of endocytic pathway in filamentous fungi has remained elusive. Recently, we have identified that FgEnd1, which has a 27% amino acid homology and shares specific EH3 domain with ScEnd3 of Saccharomyces cerevisiae, is a putative member of the endocytic machinery in Fusarium graminearum. The failure of the scend3 mutant to uptake Lucifer yellow (LY) was recovered by introducing FgEnd1 into S. cerevisiae. The deletion of fgend1 in F. graminearum resulted in a 2-fold decrease in the rate of uptake of the endocytic marker FM4-64 when compared to wild-type cells. The rate of uptake was similar to that seen in latrunculin A (Lat-A)-treated cells. Furthermore, fgend1 deletion strain of F. graminearum showed lower ferrichrome (FC) uptake activity than wild-type F. graminearum, and the same rate as LatA-treated cells. Taken together, these results suggest that FgEnd1 is a putative member of the endocytic machinery, although it acts through a different mechanism from ScEnd3 or ScEnd4 of S. cerevisiae.


Asunto(s)
Endocitosis/fisiología , Ferricromo/metabolismo , Proteínas Fúngicas/fisiología , Fusarium/fisiología , Secuencia de Aminoácidos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Colorantes/metabolismo , Proteínas del Citoesqueleto/química , Endocitosis/efectos de los fármacos , Endocitosis/genética , Proteínas Fúngicas/genética , Fusarium/efectos de los fármacos , Fusarium/genética , Isoquinolinas/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tiazolidinas/farmacología
12.
Biochem J ; 422(1): 181-91, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19469713

RESUMEN

Aft1 is a transcriptional activator in Saccharomyces cerevisiae that responds to iron availability and regulates the expression of genes in the iron regulon, such as FET3, FTR1 and the ARN family. Using a two-hybrid screen, we found that Aft1 physically interacts with the FOB (ferrioxamine B) transporter Arn3. This interaction modulates the ability of Arn3 to take up FOB. The interaction between Arn3 and Aft1 was confirmed by beta-galactosidase, co-immunoprecipitation and SPR (surface plasmon resonance) assays. Truncated Aft1 had a stronger interaction with Arn3 and caused a higher FOB-uptake activity than full-length Aft1. Interestingly, only full-length Aft1 induced the correct localization of Arn3 in response to FOB. Furthermore, we found Aft1 affected Arn3 ubiquitination. These results suggest that Aft1 interacts with Arn3 and may regulate the ubiquitination of Arn3 in the cytosolic compartment.


Asunto(s)
Deferoxamina/metabolismo , Compuestos Férricos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación , Membrana Celular/metabolismo , Ceruloplasmina/metabolismo , Retículo Endoplásmico/metabolismo , Lisina/metabolismo , Mutación/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Reproducibilidad de los Resultados , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos
13.
Biochem Biophys Res Commun ; 371(1): 63-8, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18406344

RESUMEN

Intracellular levels of iron are tightly regulated. Saccharomyces cerevisiae uses well-defined pathways to extract iron molecules from the environment. Once inside the cell, the iron molecules must be transferred to target sites via an intracellular iron transporter. Although analogous carriers have been described for other metals, such as copper, an iron transporter has yet to be identified. We used two-dimensional gel electrophoresis and mass spectrometry techniques to attempt to identify the iron transporter from cytosolic fraction of S. cerevisiae. In this study, we identified the iron-binding activity of thioredoxin reductase, and our data suggest a potential role for this enzyme in intracellular iron transport.


Asunto(s)
Proteínas de Unión a Hierro/fisiología , Hierro/metabolismo , Saccharomyces cerevisiae/enzimología , Tiorredoxina Reductasa 1/fisiología , Cromatografía de Afinidad/métodos , Dicroismo Circular , Medios de Cultivo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/aislamiento & purificación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Espectrofotometría Ultravioleta , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/aislamiento & purificación
14.
Biochem Biophys Res Commun ; 358(3): 743-50, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17512907

RESUMEN

Psychrophiles have been known as efficient organism to degrade organic solvent. To investigate the mechanism of solvent stress and identify the factors that affect the solvent stress in psychrophiles, we selected Bacillus psychrosaccharolyticus one of the psychrophiles and two-dimensional gel electrophoresis was performed. Among the protein spots analyzed by 2-DE, five spots induced in 3% IPA stress conditions were identified by MS/MS, and one of these spots was identified as a Hsp33 family. The Hsp33 protein sequence of B. psychrosaccharolyticus exhibited a high similarity with the corresponding proteins of other bacteria. The Hsp33 protein of B. psychrosaccharolyticus has a highly conserved zinc-binding domain (CXCX, CXXC) that includes four cysteine residues in the C-terminus. In addition, the transcriptional induction of the HSP33 of B. psychrosaccharolyticus was confirmed by Northern blot analysis, and formation of free thiol linkage was induced under stress conditions such as exposure to solvents, heat-shock, and oxidative stress. Furthermore, over-expressed strains of HSP33 of B. psychrosaccharolyticus in Escherichia coli improved stress tolerance to the organic solvent when compared with the wild-type. These data suggest that the solvent stress condition was similar to heat-shock or oxidative stress, especially through the triggering of induction and activation of a redox-regulatory chaperone, Hsp33, and Hsp33 plays a critical role in the tolerance to stress.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Bacillus/enzimología , Proteínas Bacterianas/fisiología , Electroforesis en Gel Bidimensional , Escherichia coli/metabolismo , Proteínas de Choque Térmico/fisiología , Espectrometría de Masas , Chaperonas Moleculares/fisiología , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , ARN/química , Homología de Secuencia de Aminoácido , Solventes/química , Compuestos de Sulfhidrilo/química , Transcripción Genética , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...