Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Front Microbiol ; 15: 1369665, 2024.
Article En | MEDLINE | ID: mdl-38511008

In industrial water systems, the occurrence of biofilm-associated pathogenic free-living amoebae (FLA) such as Naegleria fowleri is a potential hygienic problem, and factors associated with its occurrence remain poorly understood. This study aimed to evaluate the impact of four cooling circuit materials on the growth of N. fowleri in a freshwater biofilm formed at 42°C and under a hydrodynamic shear rate of 17 s-1 (laminar flow): polyvinyl chloride, stainless steel, brass, and titanium. Colonization of the freshwater biofilms by N. fowleri was found to be effective on polyvinyl chloride, stainless steel, and titanium. For these three materials, the ratio of (bacterial prey)/(amoeba) was found to control the growth of N. fowleri. All materials taken together, a maximum specific growth rate of 0.18 ± 0.07 h-1 was associated with a generation time of ~4 h. In contrast, no significant colonization of N. fowleri was found on brass. Therefore, the contribution of copper is strongly suspected.

2.
Microb Biotechnol ; 15(9): 2476-2487, 2022 09.
Article En | MEDLINE | ID: mdl-35920130

Diversity of Heterolobosea (Excavata) in environments is poorly understood despite their ecological occurrence and health-associated risk, partly because this group tends to be under-covered by most universal eukaryotic primers used for sequencing. To overcome the limits of the traditional morpho-taxonomy-based biomonitoring, we constructed a primer database listing existing and newly designed specific primer pairs that have been evaluated for Heterolobosea 18S rRNA sequencing. In silico taxonomy performance against the current SILVA SSU database allowed the selection of primer pairs that were next evaluated on reference culture amoebal strains. Two primer pairs were retained for monitoring the diversity of Heterolobosea in freshwater environments, using high-throughput sequencing. Results showed that one of the newly designed primer pairs allowed species-level identification of most heterolobosean sequences. Such primer pair could enable informative, cultivation-free assays for characterizing heterolobosean populations in various environments.


Eukaryotic Cells , High-Throughput Nucleotide Sequencing , DNA Primers/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal, 18S/genetics
3.
PLoS One ; 11(4): e0152434, 2016.
Article En | MEDLINE | ID: mdl-27035434

Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.


Genetic Markers , Microsatellite Repeats , Naegleria fowleri/genetics , Random Amplified Polymorphic DNA Technique
4.
FEMS Microbiol Lett ; 363(5): fnw022, 2016 Mar.
Article En | MEDLINE | ID: mdl-26832643

Legionella pneumophila is a pathogenic bacterium commonly found in water and responsible for severe pneumonia. Free-living amoebae are protozoa also found in water, which feed on bacteria by phagocytosis. Under favorable conditions, some L. pneumophila are able to resist phagocytic digestion and even multiply within amoebae. However, it is not clear whether L. pneumophila could infect at a same rate a large range of amoebae or if there is some selectivity towards specific amoebal genera or strains. Also, most studies have been performed using collection strains and not with freshly isolated strains. In our study, we assess the permissiveness of freshly isolated environmental strains of amoebae, belonging to three common genera (i.e. Acanthamoeba, Naegleria and Vermamoeba), for growth of L. pneumophila at three different temperatures. Our results indicated that all the tested strains of amoebae were permissive to L. pneumophila Lens and that there was no significant difference between the strains. Intracellular proliferation was more efficient at a temperature of 40°C. In conclusion, our work suggests that, under favorable conditions, virulent strains of L. pneumophila could equally infect a large number of isolates of common freshwater amoeba genera.


Acanthamoeba/microbiology , Legionella pneumophila/growth & development , Naegleria/microbiology , Temperature , Water Microbiology
5.
Int J Hyg Environ Health ; 217(2-3): 335-9, 2014 Mar.
Article En | MEDLINE | ID: mdl-23932411

Free-living amoebae are naturally present in water. These protozoa could be pathogenic and could also shelter pathogenic bacteria. Thus, they are described as a potential hazard for health. Also, free-living amoebae have been described to be resistant to biocides, especially under their cyst resistant form. There are several studies on amoeba treatments but none of them compare sensitivity of trophozoites and cysts from different genus to various water disinfectants. In our study, we tested chlorine, monochloramine and chlorine dioxide on both cysts and trophozoites from three strains, belonging to the three main genera of free-living amoebae. The results show that, comparing cysts to trophozoites inactivation, only the Acanthamoeba cysts were highly more resistant to treatment than trophozoites. Comparison of the disinfectant efficiency led to conclude that chlorine dioxide was the most efficient treatment in our conditions and was particularly efficient against cysts. In conclusion, our results would help to adapt water treatments in order to target free-living amoebae in water networks.


Acanthamoeba/drug effects , Amoeba/drug effects , Chlorine Compounds/pharmacology , Chlorine/pharmacology , Disinfectants/pharmacology , Trophozoites/drug effects , Water Purification/methods , Bacteria , Chloramines/pharmacology , Cysts , Humans , Oxides/pharmacology
6.
Water Res ; 46(13): 3958-66, 2012 Sep 01.
Article En | MEDLINE | ID: mdl-22695355

The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm(2)) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm(2) indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (µ) of N. fowleri in the range of 0.03-0.23 h(-1). At 42 °C a hyperbolic relationship was found between µ and the bacteria/amoeba ratio. A ratio of 10(6) to 10(7) bacteria/amoeba was needed to approach the apparent µ(max) value (0.23 h(-1)). Data analysis also showed that a threshold for the nutrient level of close to 10(4) bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival.


Biofilms/growth & development , Fresh Water/parasitology , Naegleria fowleri/growth & development , Naegleria fowleri/physiology , Kinetics , Temperature , Time Factors , Water Microbiology
7.
Water Res ; 45(3): 1087-94, 2011 Jan.
Article En | MEDLINE | ID: mdl-21093012

Free-living amoebae might be pathogenic by themselves and be a reservoir for bacterial pathogens, such as Legionella pneumophila. Not only could amoebae protect intra-cellular Legionella but Legionella grown within amoebae could undergo physiological modifications and become more resistant and more virulent. Therefore, it is important to study the efficiency of treatments on amoebae and Legionella grown within these amoebae to improve their application and to limit their impact on the environment. With this aim, we compared various water disinfectants against trophozoites of three Acanthamoeba strains and L. pneumophila alone or in co-culture. Three oxidizing disinfectants (chlorine, monochloramine, and chlorine dioxide) were assessed. All the samples were treated with disinfectants for 1 h and the disinfectant concentration was followed to calculate disinfectant exposure (Ct). We noticed that there were significant differences of susceptibility among the Acanthamoeba strains. However no difference was observed between infected and non-infected amoebae. Also, the comparison between the three disinfectants indicates that monochloramine was efficient at the same level towards free or co-cultured L. pneumophila while chlorine and chlorine dioxide were less efficient on co-cultured L. pneumophila. It suggests that these disinfectants should have different modes of action. Finally, our results provide for the first time disinfectant exposure values for Acanthamoeba treatments that might be used as references for disinfection of water systems.


Acanthamoeba/drug effects , Chlorine/pharmacology , Disinfectants/pharmacology , Legionella pneumophila/drug effects , Animals , Temperature
...