Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Food Chem ; 429: 136906, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37480776

Reinforced films were fabricated by impregnating paper in ethyl cellulose solutions. After solvent evaporation, the infused ethyl cellulose acted as binder of the paper microfibres and occupied the pores and cavities, thus improving the mechanical and barrier properties. To prepare active films, avocado by-products from guacamole industrial production were extracted in ethyl acetate. Then, the extract (optimized to be rich in phenolic compounds and flavonoids and mainly composed by lipids) was incorporated to the paper reinforced with the highest content of ethyl cellulose. In general, the addition of the avocado by-products extract decreased the water uptake and permeability, improved the wettability, and increased the biodegradability in seawater and the antioxidant capacity. In addition, these films acted as barriers and retainers for Escherichia coli and Bacillus cereus. The potentiality of these materials for food packaging was demonstrated by low overall migrations and a similar food preservation to common low-density polyethylene.


Persea , Food Packaging , Antioxidants , Escherichia coli , Plant Extracts
2.
Food Res Int ; 161: 111792, 2022 11.
Article En | MEDLINE | ID: mdl-36192881

Transparency is a very important technical parameter to evaluate and validate certain food packaging materials. In the recent scientific literature, several methods (i.e. transmittance, opacity, haze, and absorbance) have been used and such variety hinders a direct comparison of results from different authors. In this Review, we describe and discuss the most widely employed methods to measure transparency, with special emphasis on two main parameters: transmittance and opacity. Moreover, a comparison of the different techniques is addressed and the typical values of transmittance and opacity of common transparent food packaging materials are provided. Our current opinion is that transparency should be expressed as transmittance in the visible range due to both the quickness and easiness of the measurement and the standardization of data. This information should be accompanied by the thickness value and a graphical image of the analysed samples for a useful and complete characterization.


Food Packaging , Polymers
3.
Int J Biol Macromol ; 209(Pt B): 1985-1994, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35504412

Free-standing, robust, and transparent bioplastics were obtained by blending cellulose and naringin at different proportions. Optical, thermal, mechanical, antioxidant, and antimicrobial properties were systematically investigated. In general, the incorporation of naringin produced important UV blocking and plasticizer effects and good antioxidant and antibacterial properties. Moreover, the barrier properties were characterized by determination of their water and oxygen transmission rates, finding that both parameters decreased by increasing the naringin content and reaching values similar to other petroleum-based plastics and cellulose derivatives used for food packaging applications. Finally, the biodegradability of these films was determined by measurement of the biological oxygen demand (BOD) in seawater, demonstrating an excellent decomposition in such conditions.


Cellulose , Flavanones , Antioxidants/pharmacology , Food Packaging
4.
Carbohydr Polym ; 271: 118031, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34364545

Cellulose ester films were prepared by esterification of cellulose with a multibranched fluorinated carboxylic acid, "BRFA" (BRanched Fluorinated Acid), at different anhydroglucose unit:BRFA molar ratios (i.e., 1:0, 10:1, 5:1, and 1:1). Morphological and optical analyses showed that cellulose-BRFA materials at molar ratios 10:1 and 5:1 formed flat and transparent films, while the one at 1:1 M ratio formed rough and translucent films. Degrees of substitution (DS) of 0.06, 0.09, and 0.23 were calculated by NMR for the samples at molar ratios 10:1, 5:1, and 1:1, respectively. ATR-FTIR spectroscopy confirmed the esterification. DSC thermograms showed a single glass transition, typical of amorphous polymers, at -11 °C. The presence of BRFA groups shifted the mechanical behavior from rigid to ductile and soft with increasing DS. Wettability was similar to standard fluoropolymers such as PTFE and PVDF. Finally, breathability and water uptake were characterized and found comparable to materials typically used in textiles.


Cellulose/analogs & derivatives , Esters/chemistry , Hydrocarbons, Fluorinated/chemistry , Membranes, Artificial , Propionates/chemistry , Cellulose/chemical synthesis , Esterification , Esters/chemical synthesis , Hydrocarbons, Fluorinated/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Propionates/chemical synthesis , Tensile Strength , Wettability
5.
Int J Biol Macromol ; 180: 709-717, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33771545

The fabrication of pectin-cellulose nanocrystal (CNC) biocomposites has been systematically investigated by blending both polysaccharides at different relative concentrations. Circular free-standing films with a diameter of 9 cm were prepared by simple solution of these carbohydrates in water followed by drop-casting and solvent evaporation. The addition of pectin allows to finely tune the properties of the biocomposites. Textural characterization by AFM showed fibrous morphology and an increase in fiber diameter with pectin content. XRD analysis demonstrated that pectin incorporation also reduced the degree of crystallinity though no specific interaction between both polysaccharides was detected, by ATR-FTIR spectroscopy. The optical properties of these biocomposites were characterized for the first time and it was found that pectin in the blend reduced the reflectance of visible light and increased UV absorbance. Thermal stability, analyzed by TGA, was improved with the incorporation of pectin. Finally, pectin-cellulose nanocrystal biocomposites showed a good biodegradability in seawater, comparable to other common bioplastics such as cellulose and low-molecular weight polylactide, among others.


Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Pectins/chemistry , Hydrolysis , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanocomposites/ultrastructure , Nanoparticles/ultrastructure , Physical Phenomena , Polysaccharides/chemistry , Seawater/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
Front Plant Sci ; 12: 807723, 2021.
Article En | MEDLINE | ID: mdl-35069665

Two important biophysical properties, the thermal and UV-Vis screening capacity, of isolated tomato fruit cuticle membranes (CM) have been studied by differential scanning calorimetry (DSC) and UV-Vis spectrometry, respectively. A first order melting, corresponding to waxes, and a second order glass transition (T g ) thermal events have been observed. The glass transition was less defined and displaced toward higher temperatures along the fruit ripening. In immature and mature green fruits, the CM was always in the viscous and more fluid state but, in ripe fruits, daily and seasonal temperature fluctuations may cause the transition between the glassy and viscous states altering the mass transfer between the epidermal plant cells and the environment. CM dewaxing reduced the T g value, as derived from the role of waxes as fillers. T g reduction was more intense after polysaccharide removal due to their highly interwoven distribution within the cutin matrix that restricts the chain mobility. Such effect was amplified by the presence of phenolic compounds in ripe cuticle membranes. The structural rigidity induced by phenolics in tomato CMs was directly reflected in their mechanical elastic modulus. The heat capacity (Cp rev ) of cuticle membranes was found to depend on the developmental stage of the fruits and was higher in immature and green stages. The average Cp rev value was above the one of air, which confers heat regulation capacity to CM. Cuticle membranes screened the UV-B light by 99% irrespectively the developmental stage of the fruit. As intra and epicuticular waxes contributed very little to the UV screening, this protection capacity is attributed to the absorption by cinnamic acid derivatives. However, the blocking capacity toward UV-A is mainly due to the CM thickness increment during growth and to the absorption by flavone chalconaringenin accumulated during ripening. The build-up of phenolic compounds was found to be an efficient mechanism to regulate both the thermal and UV screening properties of cuticle membranes.

7.
Polymers (Basel) ; 14(1)2021 Dec 22.
Article En | MEDLINE | ID: mdl-35012045

The valorization of biomass from different renewable resources (i [...].

8.
Front Plant Sci ; 12: 787839, 2021.
Article En | MEDLINE | ID: mdl-34975973

The cuticle is the most external layer that protects fruits from the environment and constitutes the first shield against physical impacts. The preservation of its mechanical integrity is essential to avoid the access to epidermal cell walls and to prevent mass loss and damage that affect the commercial quality of fruits. The rheology of the cuticle is also very important to respond to the size modification along fruit growth and to regulate the diffusion of molecules from and toward the atmosphere. The mechanical performance of cuticles is regulated by the amount and assembly of its components (mainly cutin, polysaccharides, and waxes). In tomato fruit cuticles, phenolics, a minor cuticle component, have been found to have a strong influence on their mechanical behavior. To fully characterize the biomechanics of tomato fruit cuticle, transient creep, uniaxial tests, and multi strain dynamic mechanical analysis (DMA) measurements have been carried out. Two well-differentiated stages have been identified. At early stages of growth, characterized by a low phenolic content, the cuticle displays a soft elastic behavior. Upon increased phenolic accumulation during ripening, a progressive stiffening is observed. The increment of viscoelasticity in ripe fruit cuticles has also been associated with the presence of these compounds. The transition from the soft elastic to the more rigid viscoelastic regime can be explained by the cooperative association of phenolics with both the cutin and the polysaccharide fractions.

9.
Mater Sci Eng C Mater Biol Appl ; 116: 111151, 2020 Nov.
Article En | MEDLINE | ID: mdl-32806258

Keratin extracted from wool fibers has recently gained attention as an abundant source of renewable, biocompatible material for tissue engineering and drug delivery applications. However, keratin extraction and processing generally require a copious use of chemicals, not only bearing consequences for the environment but also possibly compromising the envisioned biological outcome. In this study, we present, for the first time, keratin-PVP biocomposite fibers obtained via an all-water co-electrospinning process and explored their properties modulation as a result of different thermal crosslinking treatments. The protein-based fibers featured homogenous morphologies and average diameters in the range of 170-290 nm. The thermomechanical stability and response to a wet environment can be tuned by acting on the curing time; this can be achieved without affecting the 3D fibrous network nor the intrinsic hydrophilic behavior of the material. More interestingly, our protein-based membranes treated at 170 °C for 18 h successfully sustained the attachment and growth of primary human dermal fibroblasts, a cellular model which can recapitulate more faithfully the physiological human tissue conditions. Our proposed approach can be viewed as pivotal in designing tunable protein-based scaffolds for the next generation of skin tissue growth devices.


Keratins , Povidone , Animals , Humans , Tissue Engineering , Tissue Scaffolds , Wool , Wool Fiber
10.
Polymers (Basel) ; 12(4)2020 Apr 18.
Article En | MEDLINE | ID: mdl-32325676

Metals used for food canning such as aluminum (Al), chromium-coated tin-free steel (TFS) and electrochemically tin-plated steel (ETP) were coated with a 2-3-µm-thick layer of polyaleuritate, the polyester resulting from the self-esterification of naturally-occurring 9,10,16-trihydroxyhexadecanoic (aleuritic) acid. The kinetic of the esterification was studied by FTIR spectroscopy; additionally, the catalytic activity of the surface layer of chromium oxide on TFS and, in particular, of tin oxide on ETP, was established. The texture, gloss and wettability of coatings were characterized by AFM, UV-Vis total reflectance and static water contact angle (WCA) measurements. The resistance of the coatings to solvents was also determined and related to the fraction of unreacted polyhydroxyacid. The occurrence of an oxidative diol cleavage reaction upon preparation in air induced a structural modification of the polyaleuritate layer and conferred upon it thermal stability and resistance to solvents. The promoting effect of the tin oxide layer in such an oxidative cleavage process fosters the potential of this methodology for the design of effective long-chain polyhydroxyester coatings on ETP.

11.
Sci Rep ; 10(1): 988, 2020 01 22.
Article En | MEDLINE | ID: mdl-31969660

Coral reefs are vital for the marine ecosystem and their potential disappearance can have unequivocal consequences on our environment. Aside from pollution-related threats (changes in water temperature, plastics, and acidity), corals can be injured by diseases, predators, humans and other invasive species. Diseases play an important role in this decline, but so far very few mitigation strategies have been proposed and developed to control this threat. In this work, we demonstrate that recently developed bi-layer human skin wound treatment patches containing antiseptics and natural antioxidants with controlled-release capacity can be adapted to treat scleractinian coral wounds effectively. A hydrophilic bilayer film based on polyvinylpyrrolidone (PVP) and hyaluronic acid was used to cover the open wounds while delivering the antiseptics for rapid action. Afterwards, the hydrophilic bi-layer covered wound was sealed with an antioxidant and hydrophobic ε-caprolactone-p-coumaric acid copolymer by melt injection at low temperatures. Treated coral injuries were monitored both in aquaria system and in natural environment in Maldives for over 4 months to reduce the number of entry points for organisms that could lead to diseases. The corals well-tolerated both biomaterials as well as the antiseptics incorporated in these materials. The treatments displayed self-adhering properties, tuneable dissolution time, and biocompatibility and stimulated regeneration properties within the coral wound. As such, this work demonstrates that certain human skin wound treatment materials can be successfully adapted to the curing of coral wounds and delivery of specific drugs to slow down, reduce or even stop the spread of diseases in scleractinian corals as well as in all other benthic organisms affected by uncontrolled pathologies.


Anthozoa/drug effects , Anti-Infective Agents, Local/pharmacology , Antioxidants/pharmacology , Conservation of Natural Resources/methods , Coral Reefs , Animals , Biopolymers
12.
Biomacromolecules ; 21(2): 910-920, 2020 02 10.
Article En | MEDLINE | ID: mdl-31940189

Multifunctional bioplastics have been prepared by amorphous reassembly of cellulose, hemicelluloses (xylan), and hydrolyzed lignin. For this, the biopolymers were dissolved in a trifluoroacetic acid-trifluoroacetic anhydride mixture and blended in different percentages, simulating those found in natural woods. Free-standing and flexible films were obtained after the complete evaporation of the solvents. By varying xylan and hydrolyzed lignin contents, the physical properties were easily tuned. In particular, higher proportions of hydrolyzed lignin improved hydrodynamics, oxygen barrier, grease resistance, antioxidant, and antibacterial properties, whereas a higher xylan content was related to more ductile mechanical behavior, comparable to synthetic and bio-based polymers commonly used for packaging applications. In addition, these bioplastics showed high biodegradation rates in seawater. Such new polymeric materials are presented as alternatives to common man-made petroleum-based plastics used for food packaging.


Biocompatible Materials/chemistry , Cellulose/chemistry , Lignin/chemistry , Plastics/chemistry , Wood/chemistry , Xylans/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Antioxidants/administration & dosage , Antioxidants/chemistry , Biocompatible Materials/administration & dosage , Cellulose/administration & dosage , Food Packaging/methods , Hydrolysis , Lignin/administration & dosage , Xylans/administration & dosage
13.
ACS Appl Bio Mater ; 3(2): 1044-1051, 2020 Feb 17.
Article En | MEDLINE | ID: mdl-35019306

Plastic pollution is becoming one of the most critical global problems nowadays. On the other hand, polymers are very versatile materials, and their products cannot be eliminated totally, but alternatives must be found. A very promising candidate is fungal mycelium. It is a self-growing, natural material, made of well-organized natural polymers, whose morphology, hydrodynamic, and mechanical properties can be tuned by changing the substrate of growth. In this work, we show that even small modifications in the composition of a standard fungal growth medium, potato dextrose broth (PDB), can induce significant differences in the morphology, chemical, and hydrodynamic properties of Ganoderma lucidum mycelium. The growth rate of mycelium is also influenced by the substrate of growth. Mycelium materials grown in PDB enriched with d-glucose are highly porous, thicker, and more apt to adsorb moisture with respect to mycelium materials grown in PDB with a small quantity of lignin. The latter, on the other hand, grow very fast, following a concentric pattern, and are denser and less hydrophilic. All mycelia are, however, hydrophobic, with water contact angles around 120°. Mycelia have interesting properties, tunable at the nanoscale, and are thus suitable for many applications: the methods used in this work can be applied to different strains and conditions and allow for choosing the best mycelium-based material for any use.

14.
Polymers (Basel) ; 11(6)2019 Jun 20.
Article En | MEDLINE | ID: mdl-31226802

Poly(furfuryl alcohol) (PFA) is a bioresin synthesized from furfuryl alcohol (FA) that is derived from renewable saccharide-rich biomass. In this study, we compounded this bioresin with polycaprolactone (PCL) for the first time, introducing new functional polymer blends. Although PCL is biodegradable, its production relies on petroleum precursors such as cyclohexanone oils. With the method proposed herein, this dependence on petroleum-derived precursors/monomers is reduced by using PFA without significantly modifying some important properties of the PCL. Polymer blend films were produced by simple solvent casting. The blends were characterized in terms of surface topography by atomic force microscopy (AFM), chemical interactions between PCL and PFA by attenuated total reflection-Fourier transform infrared (ATR-FTIR), crystallinity by XRD, thermal properties by differential scanning calorimetry (DSC), and mechanical properties by tensile tests and biocompatibility by direct and indirect toxicity tests. PFA was found to improve the gas barrier properties of PCL without compromising its mechanical properties, and it demonstrated sustained antioxidant effect with excellent biocompatibility. Our results indicate that these new blends can be potentially used in diverse applications ranging from food packing to biomedical devices.

15.
PLoS One ; 14(4): e0214956, 2019.
Article En | MEDLINE | ID: mdl-30958838

ε-caprolactone-p-coumaric acid copolymers at different mole ratios (ε-caprolactone:p-coumaric acid 1:0, 10:1, 8:1, 6:1, 4:1, and 2:1) were synthesized by melt-polycondensation and using 4-dodecylbenzene sulfonic acid as catalyst. Chemical analysis by NMR and GPC showed that copolyesters were formed with decreasing molecular weight as p-coumaric acid content was increased. Physical characteristics, such as thermal and mechanical properties, as well as water uptake and water permeability, depended on the mole fraction of p-coumaric acid. The p-coumarate repetitive units increased the antioxidant capacity of the copolymers, showing antibacterial activity against the common pathogen Escherichia coli. In addition, all the synthesized copolyesters, except the one with the highest concentration of the phenolic acid, were cytocompatible and hemocompatible, thus becoming potentially useful for skin regeneration applications.


Anti-Bacterial Agents , Biocompatible Materials , Caproates , Escherichia coli/growth & development , Lactones , Propionates , Skin , Wound Healing/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Caproates/chemistry , Caproates/pharmacology , Cell Line , Coumaric Acids , Humans , Lactones/chemistry , Lactones/pharmacology , Propionates/chemistry , Propionates/pharmacology , Skin/injuries , Skin/metabolism , Skin/microbiology
16.
Nanomaterials (Basel) ; 9(3)2019 Mar 05.
Article En | MEDLINE | ID: mdl-30841528

All-cellulose composites with a potential application as food packaging films were prepared by dissolving microcrystalline cellulose in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, adding cellulose nanofibers, and evaporating the solvents. First, the effect of the solvents on the morphology, structure, and thermal properties of the nanofibers was evaluated by atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. An important reduction in the crystallinity was observed. Then, the optical, morphological, mechanical, and water barrier properties of the nanocomposites were determined. In general, the final properties of the composites depended on the nanocellulose content. Thus, although the transparency decreased with the amount of cellulose nanofibers due to increased light scattering, normalized transmittance values were higher than 80% in all the cases. On the other hand, the best mechanical properties were achieved for concentrations of nanofibers between 5 and 9 wt.%. At higher concentrations, the cellulose nanofibers aggregated and/or folded, decreasing the mechanical parameters as confirmed analytically by modeling of the composite Young's modulus. Finally, regarding the water barrier properties, water uptake was not affected by the presence of cellulose nanofibers while water permeability was reduced because of the higher tortuosity induced by the nanocelluloses. In view of such properties, these materials are suggested as food packaging films.

17.
J Mater Chem B ; 7(9): 1384-1396, 2019 03 07.
Article En | MEDLINE | ID: mdl-32255009

Polyvinylpyrrolidone (PVP) has probably been one of the most utilized pharmaceutical polymers with applications ranging from a blood plasma substitute to nanoparticle drug delivery, since its synthesis in 1939. It is a highly biocompatible, non-toxic and transparent film forming polymer. Although high solubility of PVP in aqueous environment is advantageous, it still poses several problems for some applications in which sustained targeting and release are needed or hydrophobic drug inclusion and delivery systems are to be designed. In this study, we demonstrate that a common dietary phenolic antioxidant, p-coumaric acid (PCA), can be combined with PVP covering a wide range of molar ratios by solution blending in ethanol, forming new transparent biomaterial films with antiseptic and antioxidant properties. PCA not only acts as an effective natural plasticizer but also establishes H-bonds with PVP increasing its resistance to water dissolution. PCA could be released in a sustained manner up to a period of 3 days depending on the PVP/PCA molar ratio. Sustained drug delivery potential of the films was studied using methylene blue and carminic acid as model drugs, indicating that the release can be controlled. Antioxidant and remodeling properties of the films were evaluated in vitro by free radical cation scavenging assay and in vivo on a murine model, respectively. Furthermore, the material resorption of films was slower as PCA concentration increased, as observed from the in vivo full-thickness excision model. Finally, the antibacterial activity of the films against common pathogens such as Escherichia coli and Staphylococcus aureus and the effective reduction of inflammatory agents such as matrix metallopeptidases were demonstrated. All these properties suggest that these new transparent PVP/PCA films can find a plethora of applications in pharmaceutical sciences including skin and wound care.


Antioxidants/chemistry , Biopolymers/chemistry , Coumaric Acids/chemistry , Drug Carriers/chemistry , Povidone/chemistry , Animals , Carmine/chemistry , Carmine/metabolism , Carmine/pharmacology , Coumaric Acids/metabolism , Coumaric Acids/pharmacology , Coumaric Acids/therapeutic use , Drug Liberation , Elastic Modulus , Escherichia coli/drug effects , Male , Matrix Metalloproteinase 9/metabolism , Methylene Blue/chemistry , Methylene Blue/metabolism , Methylene Blue/pharmacology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Skin/metabolism , Skin/pathology , Skin Diseases/drug therapy , Skin Diseases/pathology , Staphylococcus aureus/drug effects , Water/chemistry
18.
Materials (Basel) ; 11(11)2018 Nov 07.
Article En | MEDLINE | ID: mdl-30405081

A method consisting of the alkaline hydrolysis of tomato pomace by-products has been optimized to obtain a mixture of unsaturated and polyhydroxylated fatty acids as well as a non-hydrolysable secondary residue. Reaction rates and the activation energy of the hydrolysis were calculated to reduce costs associated with chemicals and energy consumption. Lipid and non-hydrolysable fractions were chemically (infrared (IR) spectroscopy, gas chromatography/mass spectrometry (GC-MS)) and thermally (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) characterized. In addition, the fatty acid mixture was used to produce cutin-based polyesters. Freestanding films were prepared by non-catalyzed melt-polycondensation and characterized by Attenuated Total Reflected-Fourier Transform Infrared (ATR-FTIR) spectroscopy, solid-state nuclear magnetic resonance (NMR), DSC, TGA, Water Contact Angles (WCA), and tensile tests. These bio-based polymers were hydrophobic, insoluble, infusible, and thermally stable, their physical properties being tunable by controlling the presence of unsaturated fatty acids and oxygen in the reaction. The participation of an oxidative crosslinking side reaction is proposed to be responsible for such modifications.

19.
Glob Chang Biol ; 24(7): 2749-2751, 2018 07.
Article En | MEDLINE | ID: mdl-29668107

Climatic stressors due to global change induce important modifications to the chemical composition of plant cuticles and their biophysical properties. In particular, plant cuticles can become heavier, stiffer and more inert, improving plant protection.


Adaptation, Physiological , Climate Change , Plant Epidermis/physiology , Plants , Temperature , Water , Waxes
20.
Carbohydr Polym ; 192: 150-158, 2018 Jul 15.
Article En | MEDLINE | ID: mdl-29691007

Ethyl cellulose (EC)/polydimethylsiloxane (PDMS) composite films were prepared at various concentrations of PDMS in the films (0, 5, 10, 15, and 20 wt.%). Morphological and chemical analysis by EDX-SEM and ATR-FTIR showed that EC-rich matrices and PDMS-rich particles were formed, with the two polymers interacting through Hbonds. The number and diameter of particles in the composite depended on the PDMS content and allowed a fine tuning of several properties such as opacity, hydrophobicity, water uptake, and water permeability. Relative low amounts of clove essential oil were also added to the most waterproof composite material (80 wt.% ethyl cellulose and 20 wt.% PDMS). The essential oil increased the flexibility and the antioxidant capacity of the composite. Finally, the antimicrobial properties were tested against common pathogens such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The presence of clove essential oil reduced the biofilm formation on the composites.


Cellulose/analogs & derivatives , Oils, Volatile/chemistry , Silicones/chemistry , Syzygium/chemistry , Temperature , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cellulose/chemistry , Mechanical Phenomena , Staphylococcus aureus/drug effects , Water/chemistry , Wettability
...