Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(23): e202403179, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574295

RESUMEN

In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O2 or N2O are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu-oxo dimers can convert twice as much methane to methanol compared to Cu-hydroxyl dimers. Our theoretical models rationalize how Cu-di-oxo dimers can convert up to two methane molecules to methanol, while Cu-di-hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure-activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.

2.
J Am Chem Soc ; 146(7): 4489-4499, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38327095

RESUMEN

Two-dimensional covalent organic frameworks (COFs) are an emerging class of photocatalytic materials for solar energy conversion. In this work, we report a pair of structurally isomeric COFs with reversed imine bond directions, which leads to drastic differences in their physical properties, photophysical behaviors, and photocatalytic CO2 reduction performance after incorporating a Re(bpy)(CO)3Cl molecular catalyst through bipyridyl units on the COF backbone (Re-COF). Using the combination of ultrafast spectroscopy and theory, we attributed these differences to the polarized nature of the imine bond that imparts a preferential direction to intramolecular charge transfer (ICT) upon photoexcitation, where the bipyridyl unit acts as an electron acceptor in the forward imine case (f-COF) and as an electron donor in the reverse imine case (r-COF). These interactions ultimately lead the Re-f-COF isomer to function as an efficient CO2 reduction photocatalyst, while the Re-r-COF isomer shows minimal photocatalytic activity. These findings not only reveal the essential role linker chemistry plays in COF photophysical and photocatalytic properties but also offer a unique opportunity to design photosensitizers that can selectively direct charges.

3.
J Am Chem Soc ; 145(47): 25686-25694, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37931025

RESUMEN

Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an amorphous boron oxyhydroxide surface layer. The ODHP reaction mechanism proceeds via a combination of surface mediated and gas phase propagated radical reactions with the relative importance of both depending on the surface-to-void-volume ratio. Here we demonstrate the unique capability of operando X-ray Raman spectroscopy (XRS) to investigate the oxyfunctionalization of the catalyst under reaction conditions (1 mm outer diameter reactor, 500 to 550 °C, P = 30 kPa C3H8, 15 kPa O2, 56 kPa He). We probe the effect of a water cofeed on the surface of the activated catalyst and find that water removes boron oxyhydroxide from the surface, resulting in a lower reaction rate when the surface reaction dominates and an enhanced reaction rate when the gas phase contribution dominates. Computational description of the surface transformations at an atomic-level combined with high precision XRS spectra simulations with the OCEAN code rationalize the experimental observations. This work establishes XRS as a powerful technique for the investigation of light element-containing catalysts under working conditions.

4.
J Am Chem Soc ; 145(31): 17265-17273, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506379

RESUMEN

Boron-containing materials, such as hexagonal boron nitride (h-BN), recently shown to be active and selective catalysts for the oxidative dehydrogenation of propane (ODHP), have been shown to undergo significant surface oxyfunctionalization and restructuring. Although experimental ex situ studies have probed the change in chemical environment on the surface, the structural evolution of it under varying reaction conditions has not been established. Herein, we perform global optimization structure search with a grand canonical genetic algorithm to explore the chemical space of off-stoichiometric restructuring of the h-BN surface under ambient as well as ODHP-relevant conditions. A grand canonical ensemble representation of the surface is established, and the predicted 11B solid-state NMR spectra are consistent with previous experimental reports. In addition, we investigated the relative sliding of h-BN sheets and how it influences the surface chemistry with ab initio molecular dynamics simulations. The B-O linkages on the edges are found to be significantly strained during the sliding, causing the metastable sliding configurations to have higher reactivity toward the activation of propane and water.

5.
Mater Horiz ; 10(9): 3702-3711, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37401863

RESUMEN

Upon liquid phase adsorption of C1-C5 primary alcohols on high silica MFI zeolites (Si/Al = 11.5-140), the concentration of adsorbed molecules largely exceeds the concentration of traditional adsorption sites: Brønsted acid and defect sites. Combining quantitative in situ1H MAS NMR, qualitative multinuclear NMR and IR spectroscopy, hydrogen bonding of the alcohol function to oxygen atoms of the zeolite siloxane bridges (Si-O-Si) was shown to drive the additional adsorption. This mechanism co-exists with chemi- and physi-sorption on Brønsted acid and defect sites and does not exclude cooperative effects from dispersive interactions.

6.
J Am Chem Soc ; 144(41): 18766-18771, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36214757

RESUMEN

Boron oxide/hydroxide supported on oxidized activated carbon (B/OAC) was shown to be an inexpensive catalyst for the oxidative dehydrogenation (ODH) of propane that offers activity and selectivity comparable to boron nitride. Here, we obtain an atomistic picture of the boron oxide/hydroxide layer in B/OAC by using 35.2 T 11B and 17O solid-state NMR experiments. NMR spectra measured at 35.2 T resolve the boron and oxygen sites due to narrowing of the central-transition powder patterns. A 35.2 T 2D 11B{17O} dipolar heteronuclear correlation NMR spectrum revealed the structural connectivity between boron and oxygen atoms. The approach outlined here should be generally applicable to determine atomistic structures of heterogeneous catalysts containing quadrupolar nuclei.


Asunto(s)
Boro , Propano , Boro/química , Propano/química , Polvos , Carbón Orgánico , Espectroscopía de Resonancia Magnética/métodos , Oxígeno , Hidróxidos , Estrés Oxidativo
7.
Chem Commun (Camb) ; 57(90): 11952-11955, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34699581

RESUMEN

Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.

8.
ChemSusChem ; 14(19): 4317-4329, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34378340

RESUMEN

The recently reported processing strategy called solvent-targeted recovery and precipitation (STRAP) enables deconstruction of multilayer plastic packaging films into their constituent resins by selective dissolution. It uses a series of solvent washes that are guided by thermodynamic calculations of polymer solubility. In this work, the use of antisolvents in the STRAP process was reduced and solvent mixtures were considered to enable the temperature-controlled dissolution and precipitation of the target polymers in multilayer films. This was considered as a means to further improve the STRAP process and its estimated costs. Two STRAP approaches were compared based on different polymer precipitation techniques: precipitation by the addition of an antisolvent (STRAP-A) and precipitation by decreasing the solvent temperature (STRAP-B). Both approaches were able to separate the constituent polymers in a post-industrial film composed primarily of polyethylene (PE), ethylene vinyl alcohol (EVOH), and polyethylene terephthalate (PET) with near 100 % material efficiency. Technoeconomic analysis indicates that the minimum selling price (MSP) of the recycled resins with STRAP-B is 21.0 % lower than that achieved with STRAP-A. This provides evidence that thermally driven polymer precipitation is an option to reduce the use of antisolvents, making the STRAP process more economically and environmentally attractive. A third process, STRAP-C, was demonstrated with another post-industrial multilayer film of a different composition. The results demonstrate that this process can also recover polymers at similar costs to those of virgin resins, indicating that the STRAP technology is flexible and can remain economically competitive as the plastic feed complexity is increased.

9.
ChemSusChem ; 13(22): 5808-5836, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32997889

RESUMEN

Plastic solid waste (PSW) is an ever-growing environmental challenge for our society, as it not only ends up in landfills but also in waterways and oceans and is consequently entering the food chain. A key strategy to overcome this problem while also preserving carbon resources is to use PSW as a feedstock, evolving towards a circular economy. To implement this, mechanical as well as chemical recycling technologies must be developed. Indeed, owing to the high volume of PSW generated each year, mechanical recycling alone is not adequate for addressing this global challenge. Because of this, chemical recycling via thermal and heterogeneous catalytic conversion has received growing attention. This process has the potential to take PSW and convert it into usable monomers, fuels, synthesis gas, and adsorbents under more sustainable conditions than thermal degradation. This Review highlights the recent research advances in catalytic technologies for PSW conversion and valorization.

10.
Angew Chem Int Ed Engl ; 59(38): 16527-16535, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32573006

RESUMEN

Boron-containing materials, and in particular boron nitride, have recently been identified as highly selective catalysts for the oxidative dehydrogenation of alkanes such as propane. To date, no mechanism exists that can explain both the unprecedented selectivity, the observed surface oxyfunctionalization, and the peculiar kinetic features of this reaction. We combine catalytic activity measurements with quantum chemical calculations to put forward a bold new hypothesis. We argue that the remarkable product distribution can be rationalized by a combination of surface-mediated formation of radicals over metastable sites, and their sequential propagation in the gas phase. Based on known radical propagation steps, we quantitatively describe the oxygen pressure-dependent relative formation of the main product propylene and by-product ethylene. Free radical intermediates most likely differentiate this catalytic system from less selective vanadium-based catalysts.

11.
Angew Chem Int Ed Engl ; 59(16): 6546-6550, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32026560

RESUMEN

Boron-containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron-containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2 (OH)x O(3-x/2) (x=0-6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM-22 isomorphously substituted with boron (B-MWW). Using 11 B solid-state NMR spectroscopy, we show that the majority of boron species in B-MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B-MWW for ODH of propane falsifies the hypothesis that site-isolated BO3 units are the active site in boron-based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium-based catalysts and provides an important piece of the mechanistic puzzle.

12.
ACS Catal ; 10(23): 13852-13866, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34413990

RESUMEN

Boron-based heterogenous catalysts, such as hexagonal boron nitride (h-BN) as well as supported boron oxides, are highly selective catalysts for the oxidative dehydrogenation (ODH) of light alkanes to olefins. Previous catalytic measurements and molecular characterization of boron-based catalysts by 11B solid-state NMR spectroscopy and other techniques suggests that oxidized/hydrolyzed boron clusters are the catalytically active sites for ODH. However, 11B solid-state NMR spectroscopy often suffers from limited resolution because boron-11 is an I = 3/2 half-integer quadrupolar nucleus. Here, ultra-high magnetic field (B 0 = 35.2 T) is used to enhance the resolution of 11B solid-state NMR spectra and unambiguously determine the local structure and connectivity of boron species in h-BN nanotubes used as a ODH catalyst (spent h-BNNT), boron substituted MCM-22 zeolite [B-MWW] and silica supported boron oxide [B/SiO2] before and after use as an ODH catalyst. One-dimensional direct excitation 11B NMR spectra recorded at B 0 = 35.2 T are near isotropic in nature, allowing for the easy identification of all boron species. Two-dimensional 1H-11B heteronuclear correlation NMR spectra aid in the identification of boron species with B-OH functionality. Most importantly, 2D 11B dipolar double-quantum single-quantum homonuclear correlation NMR experiments were used to unambiguously probe boron-boron connectivity within all heterogeneous catalysts. These experiments are practically infeasible at lower, more conventional magnetic fields due to a lack of resolution and reduced NMR sensitivity. The detailed molecular structures determined for the amorphous oxidized/hydrolyzed boron layers on these heterogenous catalysts will aid in the future development of next generation ODH catalysts.

13.
ChemSusChem ; 13(1): 152-158, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31424599

RESUMEN

In recent years, hexagonal boron nitride (hBN) has emerged as an unexpected catalyst for the oxidative dehydrogenation of alkanes. Here, the versatility of hBN was extended to alkane oxidative cracking chemistry by investigating the production of ethylene and propylene from n-butane. Cracking selectivity was primarily controlled by the ratio of n-butane to O2 within the reactant feed. Under O2 -lean conditions, increasing temperature led to increased selectivity to ethylene and propylene and decreased selectivity to COx . In addition to surface-mediated chemistry, homogeneous gas-phase reactions likely contributed to the observed product distribution, and a reaction mechanism was proposed based on these observations. The catalyst showed good stability under oxidative cracking conditions for 100 h time-on-stream while maintaining high selectivity to ethylene and propylene.

14.
Chemistry ; 26(5): 1052-1063, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31703149

RESUMEN

The complexity of variables during incipient wetness impregnation synthesis of supported metal oxides precludes an in-depth understanding of the chemical reactions governing the formation of the dispersed oxide sites. This contribution describes the use of vapor phase deposition chemistry (also known as grafting) as a tool to systematically investigate the influence of isopropanol solvent on VO(Oi Pr)3 anchoring during synthesis of vanadium oxide on silica. The availability of anchoring sites on silica was found to depend not only on the pretreatment of the silica but also on the solvent present. H-bond donors can reduce the reactivity of isolated silanols whereas disruption of silanol nests by H-bond acceptors can turn unreactive H-bonded silanols into reactive anchoring sites. The model suggested here can inform improved syntheses with increased dispersion of metal oxides on silica.

15.
Phys Chem Chem Phys ; 21(35): 19065-19075, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31410424

RESUMEN

The catalytic properties of zeolites are intimately linked to the distribution and relative positions of Al atoms and defects in the pore network. However, characterizing this distribution is challenging, in particular when different local Al arrangements are considered. In this contribution we use a combination of first principles calculations and experimental measurements to develop a model for the Al-distribution in protonated SSZ-13. We furthermore apply this model to understand trends in OH-IR, 27Al-NMR and 29Si-NMR spectra. We use a Boltzmann distribution to predict the proton position for a given local Al configuration and show that for each configuration several H positions are occupied. Therefore a multi-peak spectrum in OH-IR vibrational spectroscopy is observed for all Al configurations, which is in line with experimentally measured spectra for zeolites at different Si/Al ratios. From NMR spectroscopy we find that the proton position leads to significant shifts in 27Al-NMR and 29Si-NMR spectra due to the modification of the local strain, which is lost when a uniform background charge is introduced. These findings are supported by experimental measurements. Finally we discuss the shortcomings of the presented model in terms of unit cell size and the impact of adjacent unit cells.

16.
ACS Sustain Chem Eng ; 7(15): 13430-13436, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32953280

RESUMEN

We report on the synthesis and characterization of novel mesoporous chiral polyboronates obtained by condensation of (R,S)/(S,S)-hexane-1,2,5,6-tetrol (HT) with simple aromatic diboronic acids (e.g., 1,3-benzenediboronic acid) (BDB). HT is a cellulose-derived building block comprising two 1,2-diol structures linked by a flexible ethane bridge. It typically consists of two diastereomers one of which [(S,R)-HT] can be made chirally pure. Boronic acids are abundantly available due to their importance in Suzuki-Miyaura coupling reactions. They are generally considered nontoxic and easy to synthesize. Reactive dissolution of generally sparingly soluble HT with BDB, in only a small amount of solvent, yields the mesoporous HT/polyboronate materials by spontaneous precipitation from the reaction mixture. The 3D nature of HT/polyboronate materials results from the entanglement of individual 1D polymeric chains. The obtained BET surface areas (SAs) and pore volumes (PVs) depend strongly on HT's diastereomeric excess and the meta/para orientation of the boronic acids on the phenyl ring. This suggests a strong influence of the curvature(s) of the 1D polymeric chains on the final materials' properties. Maximum SA and PV values are respectively 90 m2 g-1 and 0.44 mL g-1. Variably sized mesopores, spanning mainly the 5-50 nm range, are evidenced. The obtained pore volumes rival the ones of some covalent organic frameworks (COFs), yet they are obtained in a less expensive and more benign fashion. Moreover, currently no COFs have been reported with pore diameters in excess of 5 nm. In addition, chiral boron-based COFs have presently not been reported. Scanning electron microscopy reveals the presence of micrometer-sized particles, consisting of aggregates of plates, forming channels and cell-like structures. X-ray diffraction shows the crystalline nature of the material, which depends on the nature of the aromatic diboronic acids and, in the specific case of 1,4-benzenediboronic acid, also on the applied diastereomeric excess in HT.

17.
J Am Chem Soc ; 141(1): 182-190, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525543

RESUMEN

Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNT) were recently reported as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins in the gas phase. Previous studies revealed a substantial increase in surface oxygen content after exposure to ODH conditions (heating to ca. 500 °C under a flow of alkane and oxygen); however, the complexity of these materials has thus far precluded an in-depth understanding of the oxygenated surface species. In this contribution, we combine advanced NMR spectroscopy experiments with scanning electron microscopy and soft X-ray absorption spectroscopy to characterize the molecular structure of the oxygen functionalized phase that arises on h-BN and BNNT following catalytic testing for ODH of propane. The pristine BN materials are readily oxidized and hydrolyzed under ODH reaction conditions to yield a phase consisting of three-coordinate boron sites with variable numbers of hydroxyl and bridging oxide groups which is denoted B(OH) xO3- x (where x = 0-3). Evidence for this robust oxide phase revises previous literature hypotheses of hydroxylated BN edges as the active component on h-BN.

18.
J Phys Chem Lett ; 10(1): 20-25, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557024

RESUMEN

Partially oxidized surfaces of hexagonal boron nitride (hBN) and several metal borides are unexpectedly excellent catalysts for oxidative dehydrogenation of alkanes to olefins, but the nature of the active site(s) on these B-containing interfaces remains elusive. We characterize the surface of the partially oxidized B-rich hBN surface under reaction conditions from first principles. The interface has thermal access to multiple different stoichiometries and multiple structures of each stoichiometry. The size of the thermal ensemble is composition-dependent. The phase diagram of the interface constructed on the basis of the statistical ensembles of many accessible states is very different from the one based on global minima. Phase boundaries shift and blur, and phases consist of several stoichiometries and structures. The BO layer transiently exposes the reactive -B═O motifs in the metastable states. The fluxionality and structural diversity emerging under reaction conditions must be taken into account in theoretically descriptions of the catalytic interface.

19.
Acc Chem Res ; 51(10): 2556-2564, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30285416

RESUMEN

Light olefins such as ethylene and propylene form the foundation of the modern chemical industry, with yearly production volumes well into the hundreds of millions of metric tons. Currently, these light olefins are mainly produced via energy-intensive steam cracking. Alternatively, oxidative dehydrogenation (ODH) of light alkanes to produce olefins allows for lower operation temperatures and extended catalyst lifetimes, potentially leading to valuable process efficiencies. The potential benefits of this route have led to significant research interest due to the wide availability of natural gas from shale deposits. Advances in this area have still not yielded catalysts that are sufficiently selective to olefins for industrial implementation, and ODH still remains a holy grail of selective alkane oxidation research. The main challenge in selective oxidation lies in preventing the overoxidation of the desired product, such as propylene during propane oxidation, to CO and CO2. Research into selective heterogeneous catalysts for the oxidative dehydrogenation of propane has led to the extensive use of vanadium oxide-based catalysts, and studies on the surface mechanism involved have been used to improve the catalytic activity of the material. Despite decades of research, however, selectivity toward propylene has not proven satisfactory at industrially relevant conversions. It is imperative for new catalytic systems that minimize product overoxidation to be developed for future applications of oxidative dehydrogenation processes. While rational catalyst design has been successful in developing homogeneous catalyst systems, its practical use in heterogeneous catalyst development remains modest. The complexity of surfaces with a variety of terminations and bulk structures, let alone their modification by the chemical potential of a reaction mixture, makes heterogeneous catalyst discovery serendipitous in many cases. The catalyst family presented in this Account is no exception. The importance of catalysis research lies in exploring the science behind serendipity. In this Account, we will first present our initial discovery of boron nitride (BN) as an unexpected catalyst for the oxidative dehydrogenation of light alkanes. Beyond its surprising activity, BN also drew interest due to its low selectivity to carbon oxides. This observation made BN distinct from previously studied metal oxide catalysts for selective alkane oxidation. We narrowed down its unique reactivity to the oxygen functionalization of the catalyst surface, particularly the formation of B-O species as probed by various spectroscopic techniques. In investigating the critical role of each of the structural elements during ODH, we discovered that not only BN but an entire class of boron-containing compounds are active and selective for the formation of propylene from propane. All these materials form a complex oxidized surface with a distribution of BO x surface sites. This discovery opens the doors to a new field of boron-based oxidation chemistry that currently has more questions than answers. We aim to make this Account a starting point for the research community to explore these new materials to understand their surface mechanisms and the surface species that offer a unique selectivity toward olefinic products. Effective use of these materials may lead to novel processes for efficient use of abundant light alkane resources by oxidation chemistry.

20.
J Am Chem Soc ; 140(44): 14614-14618, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30352504

RESUMEN

Covalent organic framework (COF) represents an emerging class of porous materials that have exhibited great potential in various applications, particularly in catalysis. In this work, we report a newly designed 2D COF with incorporated Re complex, which exhibits intrinsic light absorption and charge separation (CS) properties. We show that this hybrid catalyst can efficiently reduce CO2 to form CO under visible light illumination with high electivity (98%) and better activity than its homogeneous Re counterpart. More importantly, using advanced transient optical and X-ray absorption spectroscopy and in situ diffuse reflectance spectroscopy, we unraveled three key intermediates that are responsible for CS, the induction period, and rate limiting step in catalysis. This work not only demonstrates the potential of COFs as next generation photocatalysts for solar fuel conversion but also provide unprecedented insight into the mechanistic origins for light-driven CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...