Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Anat ; 241(6): 1357-1370, 2022 12.
Article En | MEDLINE | ID: mdl-36056596

Indirect development is widespread in anurans and is considered an ancestral condition. The metamorphosis of larvae into juveniles involves highly coordinated morphological, physiological, biochemical, and behavioral changes, promoted by the thyroid hormone and interrenal corticosteroids. Stress response to environmental changes is also mediated by corticosteroids, affecting the timing and rate of metamorphosis and leading to great developmental plasticity in tadpoles. Given the potential effect of interrenal gland ontogeny alterations on metamorphosis and the lack of studies addressing both the morphology and endocrinology of this gland in tadpoles, we present corticosterone (CORT) production and histological changes through the ontogeny of interrenal gland in the generalized pond-type tadpole of Rhinella arenarum (Anura, Bufonidae). This species shows the highest concentration of whole-body CORT by the early climax when drastic metamorphic changes begin. This is coincident with the morphological differentiation of steroidogenic cells and the formation of interrenal cords. By this stage, steroidogenic cells have a shrunken cytoplasm, with a significantly higher nucleus-to-cell diameter ratio. The lowest CORT concentration during premetamorphosis and late climax is associated with small undifferentiated cells with lipid inclusions surrounding large blood vessels between kidneys, and with cords of differentiated steroidogenic cells with a significantly lower nucleus-to-cell diameter ratio, respectively. Our study characterizes the morphological and physiological pattern of interrenal gland development, showing an association between certain histological and morphometric characteristics and CORT levels. Variations in this morpho-physiological pattern should be considered when studying the phenotypic plasticity or variable growth rates of tadpoles.


Interrenal Gland , Animals , Larva , Metamorphosis, Biological/physiology , Corticosterone/pharmacology , Corticosterone/physiology , Thyroid Hormones
2.
Dis Model Mech ; 15(3)2022 03 01.
Article En | MEDLINE | ID: mdl-35044452

RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition.


Mammary Glands, Human , Neoplasms , Animals , Female , Humans , Lactation/physiology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Human/metabolism , Mice , Neoplasms/pathology , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , STAT3 Transcription Factor/metabolism
3.
J Morphol ; 278(7): 896-906, 2017 07.
Article En | MEDLINE | ID: mdl-28370269

Vision is one of the main sensory systems in amphibians, and the eye structure is highly associated with habitat conditions. The ontogeny, as well as the adult structure, of the eye has been studied in only a few species. The life change after metamorphosis is accompanied by changes in the visual environment. The aim of this work is to describe the eye ontogeny of Pleurodema bufoninum and to compare it with that of Pleurodema somuncurense. Specimens of both Pleurodema species were processed for histology analysis at different stages of development, including the tadpole, postmetamorphic, and adult forms. Eyes in both Pleurodema species are composed of the 3 tunics, tunica fibrosa, tunica vasculosa, and tunica interna, and the lens. Additionally, in both, the iris presents a projection on its dorsal and ventral free ends that screens the cornea. This structure has been reported in the eye of several anuran species and is called the umbraculum, meniscus or pupillary nodule. Our results show that the structures related to light capture (retina and lens) appear early in larval life, while the components of the terrestrial-life eye (scleral cartilage, specialized cornea, eyelids, nictitating membrane, and Harderian's gland) do not develop until the metamorphic climax, when the tadpole leaves the water. The adult eyes of P. bufoninum and P. somuncurense are very similar in structure and development.


Anura/growth & development , Eye/growth & development , Animals , Eye/anatomy & histology , Eye/cytology , Iris/cytology , Larva/growth & development , Lens, Crystalline/cytology
4.
J Morphol ; 278(5): 652-664, 2017 05.
Article En | MEDLINE | ID: mdl-28165149

Chemical defenses in amphibians are a common antipredatory and antimicrobial strategy related to the presence of dermal glands that synthesize and store toxic or unpalatable substances. Glands are either distributed throughout the skin or aggregated in multiglandular structures, being the parotoids the most ubiquitous macrogland in toads of Bufonidae. Even though dermal glands begin to develop during late-larval stages, many species, including Rhinella arenarum, have immature glands by the end of metamorphosis, and their post-metamorphic growth is unknown. Herein, we compared the post-metamorphic development of parotoids and dorsal glands by histological and allometric studies in a size series of R. arenarum. Histological and histochemical studies to detect proteins, acidic glycoconjugates, and catecholamines, showed that both, parotoids and dorsal glands, acquire characteristics of adults in individuals larger than 50 mm; that is, a moment in which the cryptic coloration disappears. Parotoid height increased allometrically as a function of body size, whereas the size of small dorsal glands decreased with body size. The number of glands in the dorsum was not linearly related to body size, appearing to be an individual characteristic. Only adult specimens had intraepithelial granular glands in the duct of the largest glands of the parotoids. Since toxic secretions accumulate in the central glands of parotoids, allometric growth of parotoids may translate into greater protection from predators in the largest animals. Conversely, large glands in the dorsum, which produce a proteinaceous secretion of unknown function, grow isometrically to body size. Some characteristics, like intraepithelial glands in the ducts and basophilic glands in the dorsum, are limited to adults.


Bufonidae/embryology , Metamorphosis, Biological , Skin/anatomy & histology , Animals , Larva
5.
J Morphol ; 277(7): 957-77, 2016 07.
Article En | MEDLINE | ID: mdl-27151937

This study describes the spermatozoa of 10 of the 15 species of the Neotropical frog genus Pleurodema through transmission electron microscopy. The diversity of oviposition modes coupled with a recent phylogenetic hypothesis of Pleurodema makes it an interesting group for the study of ultrastructural sperm evolution in relation to fertilization environment and egg-clutch structure. We found that Pleurodema has an unusual variability in sperm morphology. The more variable structures were the acrosomal complex, the midpiece, and the tail. The acrosomal complex has all the structures commonly reported in hyloid frogs but with different degree of development of the subacrosomal cone. Regarding the midpiece, the variability is given by the presence or absence of the mitochondrial collar. Finally, the tail is the most variable structure, ranging from single (only axoneme) to more complex (presence of paraxonemal rod, cytoplasmic sheath, and undulating membrane), with the absence of the typical axial fiber present in hyloid frogs, also shared with some other genera of Leiuperinae. J. Morphol. 277:957-977, 2016. © 2016 Wiley Periodicals, Inc.


Anura/anatomy & histology , Phylogeny , Spermatozoa/ultrastructure , Animals , Anura/classification , Biological Evolution , Male , Mitochondria/ultrastructure
6.
J Anat ; 228(3): 430-42, 2016 Mar.
Article En | MEDLINE | ID: mdl-26555696

Serous (granular or venom) glands occur in the skin of almost all species of adult amphibians, and are thought to be the source of a great diversity of chemical compounds. Despite recent advances in their chemistry, odorous volatile substances are compounds that have received less attention, and until now no study has attempted to associate histological data with the presence of these molecules in amphibians, or in any other vertebrate. Given the recent identification of 40 different volatile compounds from the skin secretions of H. pulchellus (a treefrog species that releases a strong odour when handled), we examined the structure, ultrastructure, histochemistry, and distribution of skin glands of this species. Histological analysis from six body regions reveals the presence of two types of glands that differ in their distribution. Mucous glands are homogeneously distributed, whereas serous glands are more numerous in the scapular region. Ultrastructural results indicate that electron-translucent vesicles observed within granules of serous glands are similar to those found in volatile-producing glands from insects and also with lipid vesicles from different organisms. Association among lipids and volatiles is also evidenced from chemical results, which indicate that at least some of the volatile components in H. pulchellus probably originate within the metabolism of fatty acids or the mevalonate pathway. As odorous secretions are often considered to be secreted under stress situations, the release of glandular content was assessed after pharmacological treatments, epinephrine administrated in vivo and on skin explants, and through surface electrical stimulation. Serous glands responded to all treatments, generally through an obvious contraction of myoepithelial cells that surround their secretory portion. No response was observed in mucous glands. Considering these morpho-functional results, along with previous identification of volatiles from H. pulchellus and H. riojanus after electrical stimulation, we suggest that the electron-translucent inclusions found within the granules of serous glands likely are the store sites of volatile compounds and/or their precursors. Histochemical and glandular distribution analyses in five other species of frogs of the hylid tribe Cophomantini, revealed a high lipid content in all the species, whereas a heterogeneous distribution of serous glands is only observed in species of the H. pulchellus group. The distribution pattern of serous glands in members of this species group, and the odorous volatile secretions are probably related to defensive functions.


Anura/anatomy & histology , Bodily Secretions , Exocrine Glands/anatomy & histology , Exocrine Glands/metabolism , Skin/anatomy & histology , Skin/metabolism , Animals , Anura/physiology , Microscopy, Electron, Transmission , Odorants
7.
Anat Rec (Hoboken) ; 299(1): 141-56, 2016 Jan.
Article En | MEDLINE | ID: mdl-26479879

Avoiding predation is critical to survival of animals; chemical defenses represent a common strategy among amphibians. In this study, we examined histologically the morphology of skin glands and types of secretions related to chemical skin defense during ontogeny of Rhinella arenarum. Prior to metamorphic climax the epidermis contains typical bufonid giant cells producing a mucous substance supposedly involved in triggering a flight reaction of the tadpole school. An apical layer of alcianophilic mucus covers the epidermis, which could produce the unpleasant taste of bufonid tadpoles. Giant cells disappear by onset of metamorphic climax, when multicellular glands start developing, but the apical mucous layer remains. By the end of climax, neither the granular glands of the dorsum nor the parotoid regions are completely developed. Conversely, by the end of metamorphosis the mucous glands are partially developed and secrete mucus. Adults have at least three types of granular glands, which we designate type A (acidophilic), type B (basophilic) and ventral (mucous). Polymorphic granular glands distribute differently in the body: dorsal granular glands between warts and in the periphery of parotoids contain protein; granular glands of big warts and in the central region of parotoids contain catecholamines, lipids, and glycoconjugates, whereas ventral granular glands produce acidic glycoconjugates. Mucous glands produce both mucus and proteins. Results suggest that in early juveniles the chemical skin defense mechanisms are not functional. Topographical differences in adult skin secretions suggest that granular glands from the big warts in the skin produce similar toxins to the parotoid glands.


Anura/anatomy & histology , Anura/growth & development , Epidermis/growth & development , Metamorphosis, Biological/physiology , Skin/anatomy & histology , Skin/growth & development , Animals , Epidermis/anatomy & histology , Exocrine Glands/anatomy & histology , Exocrine Glands/growth & development , Female , Immunohistochemistry , Male , Predatory Behavior
8.
Ecotoxicol Environ Saf ; 92: 10-7, 2013 Jun.
Article En | MEDLINE | ID: mdl-23499184

Despite of the various studies reporting on the subject, anticipating the impacts of the widely-used herbicide atrazine on anuran tadpoles metamorphosis remains complex as increases or decreases of larval period duration are almost as frequently reported as an absence of effect. The aim of the present study was to examine the effects of environmentally-relevant concentrations of atrazine (0.1, 1, 10, 100, and 1000µg/L) on the timings of metamorphosis and body size at metamorphosis in the common South American toad, Rhinella arenarum (Anura: bufonidae). None of the atrazine concentrations tested significantly altered survival. Low atrazine concentrations in the range of 1-100µg/L were found to accelerate developmental rate in a non-monotonic U-shaped concentration-response relationship. This observed acceleration of the metamorphic process occurred entirely between stages 25 and 39; treated tadpoles proceeding through metamorphosis as control animals beyond this point. Together with proceeding through metamorphosis at a faster rate, tadpoles exposed to atrazine concentrations in the range of 1-100µg/L furthermore transformed into significantly larger metamorphs than controls, the concentration-response curve taking the form of an inverted U in this case. The no observed effect concentration (NOEC) was 0.1µg atrazine/L for both size at metamorphosis and timings of metamorphosis. Tadpoles exposed to 100µg/L 17ß-estradiol presented the exact same alterations of developmental rate and body size as those treated with 1, 10 and 100µg/L of atrazine. Elements of the experimental design that facilitated the detection of alterations of metamorphosis at low concentrations of atrazine are discussed, together with the ecological significance of those findings.


Atrazine/toxicity , Herbicides/toxicity , Larva/growth & development , Metamorphosis, Biological/drug effects , Animals , Body Size/drug effects , Bufo arenarum , Larva/drug effects , Water Pollutants, Chemical/toxicity
9.
J Morphol ; 273(11): 1257-71, 2012 Nov.
Article En | MEDLINE | ID: mdl-22806994

Many anuran species are characterized by sexually dimorphic skin glands. These glands often are concentrated on specific areas, such as the mental region, flanks, or the nuptial pads. We studied the histology and histochemistry of mental and lateral glands in Hypsiboas punctatus, and compared them to skin from other body regions. We describe four types of dermal glands, two types of mucous and two types of serous glands. The mucous glands are formed by a single layered epithelium. The mucocytes surrounding a central lumen are filled with polyhedral granules. Ordinary mucous glands are small sized glands with cubical epithelium, mucoid content, and small granules. Specialized mucous glands are characterized by a larger size, a columnar epithelium, a proteinaceous content and larger granules. Both types of serous glands are syncytial and share some structural features including size, shape, and morphology of secretory granules. However, ordinary and specialized serous glands differ in their histochemical properties, size and appearance of secretory granules, and glandular outlets. The specialized type of mucous glands in H. punctatus resembles most SDSGs described in anurans, whereas the presence of specialized serous glands that are sexually dimorphic is less common. Both specialized glands occur only in mental and lateral regions of males, whereas ordinary mucous and ordinary serous glands occur in males and females.


Anura/anatomy & histology , Exocrine Glands/anatomy & histology , Skin/anatomy & histology , Animals , Cytoplasmic Granules/ultrastructure , Exocrine Glands/ultrastructure , Female , Histocytochemistry , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Secretory Vesicles/ultrastructure , Sex Characteristics , Skin/ultrastructure
10.
Gen Comp Endocrinol ; 174(2): 211-8, 2011 Nov 01.
Article En | MEDLINE | ID: mdl-21925177

This work investigates the effects of androgenic gland (AG) ablation on the structure of the reproductive system, development of secondary sexual characters and somatic growth in Cherax quadricarinatus males. The AG ablation, which was performed at an early developmental stage (initial weight: 1.85±0.03 g), had no effect on the somatic growth parameters (specific growth rate and growth increment), but it prevented the re-formation of male gonopores and appendices masculinae. However, the red patch differentiation and chelae size were similar to those in control males. All the ablated animals developed a male reproductive system. Testis structure was macroscopically and histologically normal. The distal portion of the vas deferens (DVD) was enlarged in some animals, with histological alterations of the epithelium and the structure of the spermatophore. Results suggest that the higher growth in males than in females may be due to an indirect effect of the AG on energy investment in reproduction rather than to a direct effect of an androgen. This is the first report of a potential action of the AG on the secretory activity of the distal VD and the structural organization of the spermatophore. Although the AG may play a role in the development of male copulatory organs, its association with the red patch development deserves further research. The results obtained in the present study support and complement those from intersexes of the same species.


Androgens/metabolism , Decapoda/metabolism , Decapoda/physiology , Endocrine Glands/surgery , Reproduction/physiology , Animals , Endocrine Glands/metabolism , Female , Male , Sex Differentiation , Testis/metabolism , Testis/physiology
11.
Biocell ; 26(3): 347-55, 2002 Dec.
Article En | MEDLINE | ID: mdl-12625309

The lung of the toad, Melanophryniscus stelzneri stelzneri was studied using scanning and transmission electron microscopy. In M.s.stelzneri the parenchyma forms a polygonal network arrangement, therefore the parenchyma is edicular. These spaces are delimited by the interconnection of third order septa which are covered by respiratory epithelium. Small patches of ciliated epithelium without goblet cells appear irregularly distributed on the septa. The respiratory epithelium consists of one type of pneumocyte, which shows characteristics of both type I and type II alveolar cells of higher vertebrates. The pneumocytes are irregular in shape and possess attenuated cytoplasmic processes, which spread around the capillaries to form the outer layer of the air-blood barrier. These cells contain different types of cytoplasmic bodies: electron dense bodies, multivesicular bodies and lamellar bodies. Dense bodies are probably the precursors of lamellar bodies and the multivesicular bodies are incorporated into the latter. Neuroepithelial bodies appear randomly distributed over the septa. These bodies are separated from the lumen of the lung by thin cytoplasmic processes of neighbouring pneumocytes. The air-blood barrier consists of three layers: epithelium, interstitial space and endothelium. The relatively simple pulmonary structure of M.s.stelzneri is due to a lower degree of partitioning of the pulmonary lumen in comparison to the lung of other bufonid anurans, could be correlated with a well developed cutaneous and buccopharingeal respiration. The testing of this hypothesis awaits further studies.


Anura , Lung/ultrastructure , Animals , Anura/anatomy & histology , Lung/anatomy & histology , Lung/cytology , Microscopy, Electron , Microscopy, Electron, Scanning
12.
Biocell ; 26(3): 347-55, 2002 Dec.
Article En | BINACIS | ID: bin-39047

The lung of the toad, Melanophryniscus stelzneri stelzneri was studied using scanning and transmission electron microscopy. In M.s.stelzneri the parenchyma forms a polygonal network arrangement, therefore the parenchyma is edicular. These spaces are delimited by the interconnection of third order septa which are covered by respiratory epithelium. Small patches of ciliated epithelium without goblet cells appear irregularly distributed on the septa. The respiratory epithelium consists of one type of pneumocyte, which shows characteristics of both type I and type II alveolar cells of higher vertebrates. The pneumocytes are irregular in shape and possess attenuated cytoplasmic processes, which spread around the capillaries to form the outer layer of the air-blood barrier. These cells contain different types of cytoplasmic bodies: electron dense bodies, multivesicular bodies and lamellar bodies. Dense bodies are probably the precursors of lamellar bodies and the multivesicular bodies are incorporated into the latter. Neuroepithelial bodies appear randomly distributed over the septa. These bodies are separated from the lumen of the lung by thin cytoplasmic processes of neighbouring pneumocytes. The air-blood barrier consists of three layers: epithelium, interstitial space and endothelium. The relatively simple pulmonary structure of M.s.stelzneri is due to a lower degree of partitioning of the pulmonary lumen in comparison to the lung of other bufonid anurans, could be correlated with a well developed cutaneous and buccopharingeal respiration. The testing of this hypothesis awaits further studies.

...