Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 29(4): e3461, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36336650

RESUMEN

Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.


Asunto(s)
Péptidos , Receptor de Insulina , Humanos , Receptor de Insulina/metabolismo , Péptidos/química , Insulina/metabolismo , Isoformas de Proteínas , Polietilenglicoles
2.
Bioorg Chem ; 107: 104548, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33358613

RESUMEN

Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 µM) than proline-derived compounds (Kd values of 15-38 µM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.


Asunto(s)
Adamantano/química , Insulina/análogos & derivados , Prolina/química , Receptor de Insulina/metabolismo , Animales , Sitios de Unión , Humanos , Insulina/síntesis química , Insulina/metabolismo , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Ratas , Receptor de Insulina/química , Técnicas de Síntesis en Fase Sólida , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA