Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731463

The research about α-methylene-γ-lactams is scarce; however, their synthesis has emerged in recent years mainly because they are isosters of α-methylene-γ-lactones. This last kind of compound is structurally most common in some natural products' nuclei, like sesquiterpene lactones that show biological activity such as anti-inflammatory, anticancer, antibacterial, etc., effects. In this work, seven α-methylene-γ-lactams were evaluated by their inflammation and α-glucosidase inhibition. Thus, compounds 3-methylene-4-phenylpyrrolidin-2-one (1), 3-methylene-4-(p-tolyl)pyrrolidin-2-one (2), 4-(4-chlorophenyl)-3-methylenepyrrolidin-2-one (3), 4-(2-chlorophenyl)-3-methylenepyrrolidin-2-one (4), 5-ethyl-3-methylene-4-phenylpyrrolidin-2-one (5), 5-ethyl-3-methylene-4-(p-tolyl)pyrrolidin-2-one (6) and 4-(4-chlorophenyl)-5-ethyl-3-methylenepyrrolidin-2-one (7) were evaluated via in vitro α-glucosidase assay at 1 mM concentration. From this analysis, 7 exerts the best inhibitory effect on α-glucosidase compared with the vehicle, but it shows a low potency compared with the reference drug at the same dose. On the other side, inflammation edema was induced using TPA (12-O-tetradecanoylphorbol 13-acetate) on mouse ears; compounds 1-7 were tested at 10 µg/ear dose. As a result, 1, 3, and 5 show a better inhibition than indomethacin, at the same doses. This is a preliminary report about the biological activity of these new α-methylene-γ-lactams.


Anti-Inflammatory Agents , Glycoside Hydrolase Inhibitors , Lactams , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Lactams/chemistry , Lactams/pharmacology , Animals , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Mice , Structure-Activity Relationship , Computer Simulation , Edema/drug therapy , Edema/chemically induced , Molecular Structure
2.
Molecules ; 24(2)2019 Jan 15.
Article En | MEDLINE | ID: mdl-30650579

A straightforward and novel method for transformation of readily available 1,3-benzoxazines to secondary phosphonates and α-aminophosphonates using boron trifluoride etherate as catalyst is developed. The formation of phosphonates proceeds through ortho-quinone methide (o-QM) generated in situ, followed by a phospha-Michael addition reaction. On the other hand, the α-aminophosphonates were obtained by iminium ion formation and the subsequence nucleophilic substitution of alkylphosphites. This method can be also used for the preparation of o-hydroxybenzyl ethers through oxa-Michael addition.


Benzoxazines/chemistry , Organophosphonates/chemical synthesis , Catalysis , Magnetic Resonance Spectroscopy , Molecular Structure , Organophosphonates/chemistry
...