Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867704

RESUMEN

Inhalation exposures to dihydroxyacetone (DHA) occur through spray tanning and e-cigarette aerosols. Several studies in skin models have demonstrated that millimolar doses of DHA are cytotoxic, yet the genotoxicity was unclear. We examined the genotoxicity of DHA in cell models relevant to inhalation exposures. Human bronchial epithelial cells BEAS-2B, lung carcinoma cells A549, cardiomyocyte Ac16, and hepatocellular carcinoma HepG3 were exposed to DHA, and low millimolar doses of DHA were cytotoxic. IC90 DHA doses induced cell cycle arrest in all cells except the Ac16. We examined DHA's genotoxicity using strand break markers, DNA adduct detection by Repair Assisted Damage Detection (RADD), metaphase spreads, and a forward mutation assay for mutagenesis. Similar to results for skin, DHA did not induce significant levels of strand breaks. However, RADD revealed DNA adducts were induced 24 h after DHA exposure, with BEAS-2B and Ac16 showing oxidative lesions and A549 and HepG3 showing crosslink-type lesions. Yet, only low levels of reactive oxygen species or advanced glycation end products were detected after DHA exposure. Metaphase spreads revealed significant increases in chromosomal aberrations in the BEAS-2B and HepG3 with corresponding changes in ploidy. Finally, we confirmed the mutagenesis observed using the supF reporter plasmid. DHA increased the mutation frequency, consistent with methylmethane sulfonate, a mutagen and clastogen. These data demonstrate DHA is a clastogen, inducing cell-specific genotoxicity and chromosomal instability. The specific genotoxicity measured in the BEAS-2B in this study suggests that inhalation exposures pose health risks to vapers, requiring further investigation.

2.
Chem Biol Interact ; 394: 110991, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582340

RESUMEN

Exogenous exposures to the triose sugar dihydroxyacetone (DHA) occur from sunless tanning products and electronic cigarette aerosol. Once inhaled or absorbed, DHA enters cells, is converted to dihydroxyacetone phosphate (DHAP), and incorporated into several metabolic pathways. Cytotoxic effects of DHA vary across the cell types depending on the metabolic needs of the cells, and differences in the generation of reactive oxygen species (ROS), cell cycle arrest, and mitochondrial dysfunction have been reported. We have shown that cytotoxic doses of DHA induced metabolic imbalances in glycolysis and oxidative phosphorylation in liver and kidney cell models. Here, we examine the dose-dependent effects of DHA on the rat cardiomyocyte cell line, H9c2. Cells begin to experience cytotoxic effects at low millimolar doses, but an increase in cell survival was observed at 2 mM DHA. We confirmed that 2 mM DHA increased cell survival compared to the low cytotoxic 1 mM dose and investigated the metabolic differences between these two low DHA doses. Exposure to 1 mM DHA showed changes in the cell's fuel utilization, mitochondrial reactive oxygen species (ROS), and transient changes in the glycolysis and mitochondrial energetics, which normalized 24 h after exposure. The 2 mM dose induced robust changes in mitochondrial flux through acetyl CoA and elevated expression of fatty acid synthase. Distinct from the 1 mM dose, the 2 mM exposure increased mitochondrial ROS and NAD(P)H levels, and sustained changes in LDHA/LDHB and acetyl CoA-associated enzymes were observed. Although the cells were exposed to low cytotoxic (1 mM) and non-cytotoxic (2 mM) acute doses of DHA, significant changes in mitochondrial metabolic pathways occurred. Further, the proliferation increase at the acute 2 mM DHA dose suggests a metabolic adaption occurred with sustained consequences in survival and proliferation. With increased exogenous exposure to DHA through e-cigarette aerosol, this work suggests cell metabolic changes induced by acute or potentially chronic exposures could impact cell function and survival.


Asunto(s)
Supervivencia Celular , Dihidroxiacetona , Glucólisis , Mitocondrias , Miocitos Cardíacos , Especies Reactivas de Oxígeno , Animales , Ratas , Dihidroxiacetona/metabolismo , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Glucólisis/efectos de los fármacos , Reprogramación Metabólica
3.
PLoS One ; 17(12): e0278516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36472985

RESUMEN

Dihydroxyacetone (DHA) is the active ingredient in sunless tanning products and a combustion product from e-juices in electronic cigarettes (e-cigarettes). DHA is rapidly absorbed in cells and tissues and incorporated into several metabolic pathways through its conversion to dihydroxyacetone phosphate (DHAP). Previous studies have shown DHA induces cell cycle arrest, reactive oxygen species, and mitochondrial dysfunction, though the extent of these effects is highly cell-type specific. Here, we investigate DHA exposure effects in the metabolically active, HepG3 (C3A) cell line. Metabolic and mitochondrial changes were evaluated by characterizing the effects of DHA in metabolic pathways and nutrient-sensing mechanisms through mTOR-specific signaling. We also examined cytotoxicity and investigated the cell death mechanism induced by DHA exposure in HepG3 cells. Millimolar doses of DHA were cytotoxic and suppressed glycolysis and oxidative phosphorylation pathways. Nutrient sensing through mTOR was altered at both short and long time points. Increased mitochondrial reactive oxygen species (ROS) and mitochondrial-specific injury induced cell cycle arrest and cell death through a non-classical apoptotic mechanism. Despite its carbohydrate nature, millimolar doses of DHA are toxic to liver cells and may pose a significant health risk when higher concentrations are absorbed through e-cigarettes or spray tanning.


Asunto(s)
Dihidroxiacetona , Sistemas Electrónicos de Liberación de Nicotina , Dihidroxiacetona/farmacología , Especies Reactivas de Oxígeno , Mitocondrias , Hígado
4.
Chem Res Toxicol ; 35(4): 616-625, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35324152

RESUMEN

Dihydroxyacetone (DHA) is a major byproduct of e-cigarette combustion and is the active ingredient in sunless tanning products. Mounting evidence points to its damaging effects on cellular functions. While developing a simple synthetic route to monomeric [13C3]DHA for flux metabolic studies that compared DHA and glyceraldehyde (GA) metabolism, we uncovered that solid DHA ages upon storage and differences in the relative abundance of each of its isomer occur when reconstituted in an aqueous solution. While all three of the dimeric forms of DHA ultimately resolve to the ketone and hydrated forms of monomeric DHA once in water at room temperature, these species require hours rather than minutes to reach an equilibrium favoring the monomeric species. Consequently, when used in bolus or flux experiments, the relative abundance of each isomer and its effects at the time of application is dependent on the initial DHA isomeric composition and concentration, and time of equilibration in solution before use. Here, we make recommendations for the more consistent handling of DHA as we report conditions that ensure that DHA is present in its monomeric form while in solutions, conditions used in an isotopic tracing study that specifically compared monomeric DHA and GA metabolism in cells.


Asunto(s)
Dihidroxiacetona , Sistemas Electrónicos de Liberación de Nicotina , Isomerismo , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...