Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104965, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356718

RESUMEN

Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.


Asunto(s)
Citocinas , Lipoilación , Neuronas , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Embarazo , Citocinas/metabolismo , Ganglios Espinales/metabolismo , Células HEK293 , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteómica , Supervivencia Celular
2.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185190

RESUMEN

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


Asunto(s)
Aciltransferasas/metabolismo , Axones/enzimología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Aciltransferasas/genética , Animales , Fenómenos Electrofisiológicos , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Hipocampo/citología , Humanos , Ratones , Unión Proteica , Canales de Potasio de la Superfamilia Shaker/genética , Técnicas del Sistema de Dos Híbridos
3.
Cell Rep ; 33(7): 108365, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207199

RESUMEN

After optic nerve crush (ONC), the cell bodies and distal axons of most retinal ganglion cells (RGCs) degenerate. RGC somal and distal axon degenerations were previously thought to be controlled by two parallel pathways, involving activation of the kinase dual leucine-zipper kinase (DLK) and loss of the axon survival factor nicotinamide mononucleotide adenylyltransferase-2 (NMNAT2), respectively. Here, we report that palmitoylation of both DLK and NMNAT2 by the palmitoyl acyltransferase ZDHHC17 couples these signals. ZDHHC17-dependent palmitoylation enables DLK-dependent somal degeneration after ONC and also ensures NMNAT-dependent distal axon integrity in healthy optic nerves. We provide evidence that ZDHHC17 also controls survival-versus-degeneration decisions in dorsal root ganglion (DRG) neurons, and we identify conserved motifs in NMNAT2 and DLK that govern their ZDHHC17-dependent regulation. These findings suggest that the control of somal and distal axon integrity should be considered as a single, holistic process, mediated by the concerted action of two palmitoylation-dependent pathways.


Asunto(s)
Aciltransferasas/metabolismo , Axones/metabolismo , Células Ganglionares de la Retina/metabolismo , Aciltransferasas/fisiología , Animales , Axones/fisiología , Caenorhabditis elegans , Supervivencia Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Lipoilación , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nervio Óptico/metabolismo , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA