Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Nutrients ; 15(20)2023 Oct 16.
Article En | MEDLINE | ID: mdl-37892451

Excessive intake of sugar, and particularly fructose, is closely associated with the development and progression of metabolic syndrome in humans and animal models. However, genetic disorders in fructose metabolism have very different consequences. While the deficiency of fructokinase, the first enzyme involved in fructose metabolism, is benign and somewhat desirable, missense mutations in the second enzyme, aldolase B, causes a very dramatic and sometimes lethal condition known as hereditary fructose intolerance (HFI). To date, there is no cure for HFI, and treatment is limited to avoiding fructose and sugar. Because of this, for subjects with HFI, glucose is their sole source of carbohydrates in the diet. However, clinical symptoms still occur, suggesting that either low amounts of fructose are still being consumed or, alternatively, fructose is being produced endogenously in the body. Here, we demonstrate that as a consequence of consuming high glycemic foods, the polyol pathway, a metabolic route in which fructose is produced from glucose, is activated, triggering a deleterious mechanism whereby glucose, sorbitol and alcohol induce severe liver disease and growth retardation in aldolase B knockout mice. We show that generically and pharmacologically blocking this pathway significantly improves metabolic dysfunction and thriving and increases the tolerance of aldolase B knockout mice to dietary triggers of endogenous fructose production.


Digestive System Diseases , Fructose Intolerance , Liver Diseases , Humans , Animals , Mice , Fructose Intolerance/genetics , Fructose Intolerance/diagnosis , Fructose/metabolism , Fructose-Bisphosphate Aldolase/genetics , Glucose/therapeutic use , Mice, Knockout
2.
Article En | MEDLINE | ID: mdl-37679040

BACKGROUND AND OBJECTIVE: In people with multiple sclerosis (pwMS), concern for potential disease exacerbation or triggering of other autoimmune disorders contributes to vaccine hesitancy. We assessed the humoral and T-cell responses to SARS-CoV-2 after mRNA vaccination, changes in disease activity, and development of antibodies against central or peripheral nervous system antigens. METHODS: This was a prospective 1-year longitudinal observational study of pwMS and a control group of patients with other inflammatory neurologic disorders (OIND) who received an mRNA vaccine. Blood samples were obtained before the first dose (T1), 1 month after the first dose (T2), 1 month after the second dose (T3), and 6 (T4), 9 (T5), and 12 (T6) months after the first dose. Patients were assessed for the immune-specific response, annualized relapse rate (ARR), and antibodies to onconeuronal, neural surface, glial, ganglioside, and nodo-paranodal antigens. RESULTS: Among 454 patients studied, 390 had MS (22 adolescents) and 64 OIND; the mean (SD) age was 44 (14) years; 315 (69%) were female; and 392 (87%) were on disease-modifying therapies. Antibodies to the receptor-binding domain were detected in 367 (86%) patients at T3 and 276 (83%) at T4. After a third dose, only 13 (22%) of 60 seronegative patients seroconverted, and 255 (92%) remained seropositive at T6. Cellular responses were present in 381 (93%) patients at T3 and in 235 (91%) patients at T6 including all those receiving anti-CD20 therapies and in 79% of patients receiving fingolimod. At T3 (429 patients) or T6 (395 patients), none of the patients had developed CNS autoantibodies. Seven patients had neural antibodies that were already present before immunization (3 adult patients with MS had MOG-IgG, 2 with MG and 1 with MS had neuronal cell surface antibodies [unknown antigen], and 1 with MS had myelin antibody reactivity [unknown antigen]. Similarly, no antibodies against PNS antigens were identified at T3 (427 patients). ARR was lower in MS and not significantly different in patients with OIND. Although 182 (40%) patients developed SARS-CoV-2 infection, no cases of severe COVID-19 or serious adverse events occurred. DISCUSSION: In this study, mRNA COVID-19 vaccination was safe and did not exacerbate the autoimmune disease nor triggered neural autoantibodies or immune-mediated neurologic disorders. The outcome of patients who developed SARS-CoV-2 infection was favorable.


Autoimmune Diseases , COVID-19 , Multiple Sclerosis , Adolescent , Adult , Humans , Female , Male , COVID-19 Vaccines/adverse effects , Antibody Formation , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Autoantibodies
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1885): 20220230, 2023 09 11.
Article En | MEDLINE | ID: mdl-37482773

The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.


Hominidae , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Fructose/adverse effects , Fructose/metabolism , Obesity/metabolism , Liver
4.
Nutrients ; 15(12)2023 Jun 20.
Article En | MEDLINE | ID: mdl-37375716

Although we have witnessed remarkable progress in understanding the biological mechanisms that lead to the development of rheumatic diseases (RDs), remission is still not achieved in a substantial proportion of patients with the available pharmacological treatment. As a consequence, patients are increasingly looking for complementary adjuvant therapies, including dietary interventions. Herbs and spices have a long historical use, across various cultures worldwide, for both culinary and medicinal purposes. The interest in herbs and spices, beyond their seasoning properties, has dramatically grown in many immune-mediated diseases, including in RDs. Increasing evidence highlights their richness in bioactive molecules, such as sulfur-containing compounds, tannins, alkaloids, phenolic diterpenes, and vitamins, as well as their antioxidant, anti-inflammatory, antitumorigenic, and anticarcinogenic properties. Cinnamon, garlic, ginger, turmeric, and saffron are the most popular spices used in RDs and will be explored throughout this manuscript. With this paper, we intend to provide an updated review of the mechanisms whereby herbs and spices may be of interest in RDs, including through gut microbiota modulation, as well as summarize human studies investigating their effects in Rheumatoid Arthritis, Osteoarthritis, and Fibromyalgia.


Rheumatic Diseases , Spices , Humans , Spices/analysis , Phenols , Antioxidants/pharmacology , Rheumatic Diseases/drug therapy
5.
Biomolecules ; 13(5)2023 04 30.
Article En | MEDLINE | ID: mdl-37238651

The presence of obesity and metabolic syndrome is strongly linked with chronic kidney disease (CKD), but the mechanisms responsible for the association are poorly understood. Here, we tested the hypothesis that mice with obesity and metabolic syndrome might have increased susceptibility to CKD from liquid high fructose corn syrup (HFCS) by favoring the absorption and utilization of fructose. We evaluated the pound mouse model of metabolic syndrome to determine if it showed baseline differences in fructose transport and metabolism and whether it was more susceptible to chronic kidney disease when administered HFCS. Pound mice have increased expression of fructose transporter (Glut5) and fructokinase (the limiting enzyme driving fructose metabolism) associated with enhanced fructose absorption. Pound mice receiving HFCS rapidly develop CKD with increased mortality rates associated with intrarenal mitochondria loss and oxidative stress. In pound mice lacking fructokinase, the effect of HFCS to cause CKD and early mortality was aborted, associated with reductions in oxidative stress and fewer mitochondria loss. Obesity and metabolic syndrome show increased susceptibility to fructose-containing sugars and increased risk for CKD and mortality. Lowering added sugar intake may be beneficial in reducing the risk for CKD in subjects with metabolic syndrome.


High Fructose Corn Syrup , Kidney Diseases , Metabolic Syndrome , Mice , Animals , Metabolic Syndrome/complications , High Fructose Corn Syrup/adverse effects , Mice, Obese , Dietary Sucrose/adverse effects , Dietary Sucrose/metabolism , Obesity/etiology , Fructose/metabolism , Kidney Diseases/chemically induced , Fructokinases
6.
Hypertens Res ; 46(7): 1714-1726, 2023 07.
Article En | MEDLINE | ID: mdl-37072573

A direct relationship between serum uric acid levels and hypertension, cardiovascular, renal and metabolic diseases has been reported in many basic and epidemiological studies. Among these, high blood pression is one of the most common features associated with hyperuricemia. In this regard, several small-scale interventional studies have demonstrated a significant reduction in blood pressure in hypertensive or prehypertensive patients on uric acid-lowering drugs. These observation or intervention studies have led to affirm that there is a causal relationship between uric acid and hypertension. While the clinical association between uric acid and high blood pressure is notable, no clear conclusion has yet been reached as to whether lowering uric acid is beneficial to prevent cardiovascular and renal metabolic diseases. Recently, several prospective randomized controlled intervention trials using allopurinol and other uric acid-lowering drugs have been reported, and the results from these trials were almost negative, suggesting that the correlation between hyperuricemia and cardiovascular disease has no causality. However, it is important to note that in some of these recent studies there were high dropout rates and an important fraction of participants were not hyperuricemic. Therefore, we should carry caution in interpreting the results of these studies. This review article presents the results of recent clinical trials using uric acid-lowering drugs, focusing on hypertension and cardiovascular and renal metabolic diseases, and discusses the future of uric acid therapy.


Cardiovascular Diseases , Hypertension , Hyperuricemia , Kidney Diseases , Humans , Cardiovascular Diseases/complications , Uric Acid , Hyperuricemia/complications , Hyperuricemia/drug therapy , Prospective Studies , Hypertension/complications , Kidney Diseases/complications
7.
iScience ; 26(4): 106355, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-36994079

Sarcopenia is a common and devastating condition in patients with chronic kidney disease (CKD). Here, we provide evidence that the kidney-muscle crosstalk in sarcopenia is mediated by reduced insulin sensitivity and the activation of the muscle-specific isoform of AMP deaminase, AMPD1. By using a high protein-based CKD model of sarcopenia in mice and differentiated human myotubes, we show that urea reduces insulin-dependent glucose and phosphate uptake by the skeletal muscle, thus contributing to the hyperphosphatemia observed in CKD whereas depleting intramuscular phosphate needed to restore energy and inhibit AMPD1. Hyperactivated AMPD1, in turn, aggravates the low energy state in the muscle by removing free adenosine monophosphate (AMP) and producing proinflammatory factors and uric acid which contribute to the progression of kidney disease. Our data provide molecular and metabolic evidence supporting the use of strategies aimed to improve insulin sensitivity and to block AMPD1 to prevent sarcopenia in subjects with CKD.

8.
Nephrol Dial Transplant ; 38(1): 41-48, 2023 Jan 23.
Article En | MEDLINE | ID: mdl-34473287

Climate change should be of special concern for the nephrologist, as the kidney has a critical role in protecting the host from dehydration, but it is also a favorite target of heat stress and dehydration. Here we discuss how rising temperatures and extreme heat events may affect the kidney. The most severe presentation of heat stress is heat stroke, which can result in severe electrolyte disturbance and both acute and chronic kidney disease (CKD). However, lesser levels of heat stress also have multiple effects, including exacerbating kidney disease and precipitating cardiovascular events in subjects with established kidney disease. Heat stress can also increase the risk for kidney stones, cause multiple electrolyte abnormalities and induce both acute and chronic kidney disease. Recently there have been multiple epidemics of CKD of uncertain etiology in various regions of the world, including Mesoamerica, Sri Lanka, India and Thailand. There is increasing evidence that climate change and heat stress may play a contributory role in these conditions, although other causes, including toxins, could also be involved. As climate change worsens, the nephrologist should prepare for an increase in diseases associated with heat stress and dehydration.


Heat Stress Disorders , Nephrology , Renal Insufficiency, Chronic , Humans , Climate Change , Dehydration/complications , Renal Insufficiency, Chronic/complications , Kidney , Heat Stress Disorders/complications
9.
J Clin Nurs ; 32(13-14): 3496-3503, 2023 Jul.
Article En | MEDLINE | ID: mdl-35799407

BACKGROUND: Spasticity is a frequent symptom of multiple sclerosis (MS), which may negatively influence daily living activities (ADL). OBJECTIVES: To (1) explore the feasibility to conduct a structured interview by specialist nurses about limitations in ADL; (2) determine the percentage of people with MS (PwMS) with limitations in ADL related to spasticity; (3) to assess the knowledge about spasticity and describe its clinical features. DESIGN: Observational, cross-sectional, multicentre study in 16 MS units of Catalonia (Spain). Participants were recruited from the outpatient facility and day-care hospital between July 2018 and June 2019 and met the following criteria: (1) age 18 or older, (2) diagnosis of MS according to McDonald criteria 2010 and (3) no clinical relapse in previous 30 days. METHODS: Specialist nurses conducted a structured interview divided in two parts: the assessment of (1) limitations in the ADL and (2) the presence of spasticity and associated symptoms. The usefulness of this intervention was requested. This study met the STROBE reporting guidelines checklist for observational studies. RESULTS: Three hundred sixty eight pwMS (244 women) with a mean age of 46 years and a median Expanded Disability Status Scale score of 2.5 (range, 0-8.5) were included. 262 (71%) pwMS had limitations in the ADL, and spasticity was reported as the most limiting symptom in 59 (23%). As a result of the interview, spasticity was observed in 199 (76%) participants; 47 (24%) of them were unaware that they had spasticity and 102 (51%) would not have reported it spontaneously. The level of the interview satisfaction was high (90%). CONCLUSIONS: Spasticity is a complex and limiting symptom in MS. The structured interview conducted by specialist nurses is feasible and has good acceptance. PATIENT CONTRIBUTION: Specialist nurses can be proactive in MS clinical assessment, which may help to detect symptoms with negative impact on quality of life.


Multiple Sclerosis , Muscle Spasticity , Nurse Specialists , Multiple Sclerosis/complications , Nurses , Activities of Daily Living , Quality of Life , Humans , Male , Female , Adolescent , Middle Aged , Spain , Adult , Aged , Cross-Sectional Studies
10.
BMJ Nutr Prev Health ; 6(2): 221-230, 2023.
Article En | MEDLINE | ID: mdl-38357557

Aim: To evaluate the adherence to the Mediterranean diet (MD) and the level of nutritional literacy (NL) among university students from different academic fields of study, within the context of the COVID-19 pandemic. Methods: A total of 1114 first-year undergraduate students at the University of Lisbon, Portugal, were included in this study. A self-administered online questionnaire was applied that included questions regarding sociodemographic information, the MD measured by the PREDIMED questionnaire (PREvención con DIeta MEDiterránea) and NL assessed using the Newest Vital Sign questionnaire. Results: The average PREDIMED score revealed a low adherence (6.79±2.14 points) to the MD. Notably, students in the Social Sciences and Humanities academic fields showed the highest level of adherence (U=21 071; p<0.05). Within the Health field, there was a greater prevalence of dietary behaviours aligned with the MD, contributing to higher overall adherence scores. Furthermore, 84.1% of the participants demonstrated adequate NL. Interestingly, students in the Exact Sciences and Engineering field demonstrated the highest levels of NL (5.07±1.19), particularly in questions involving mathematical reasoning. Conclusions: Our findings suggest that university students in Lisbon do not follow a MD and are far from the recommendations of this dietary pattern. While most participants showed adequate NL, it is essential to highlight the link between knowledge and application to daily practice. Despite positive literacy levels, there remains a deficit in translating this knowledge into correct dietary practices.

11.
iScience ; 25(8): 104694, 2022 Aug 19.
Article En | MEDLINE | ID: mdl-35847557

Steroid-sensitive nephrotic syndrome (SSNS) in childhood is usually due to minimal change disease (MCD). Unlike many glomerular conditions, SSNS/MCD is commonly precipitated by respiratory infections. Of interest, pulmonary inflammation releases surfactants in circulation which are soluble agonists of SIRPα, a podocyte receptor that regulates integrin signaling. Here, we characterized this pulmonary-renal connection in MCD and performed studies to determine its importance. Children with SSNS/MCD in relapse but not remission had elevated plasma surfactants and urinary SIRPα. Sera from relapsing subjects triggered podocyte SIRPα signaling via tyrosine phosphatase SHP-2 and nephrin dephosphorylation, a marker of podocyte activation. Further, addition of surfactants to MCD sera from patients in remission replicated these findings. Similarly, nasal instillation of toll-like receptor 3 and 4 agonists in mice resulted in elevated serum surfactants and their binding to glomeruli triggering proteinuria. Together, our data document a critical pulmonary-podocyte signaling pathway involving surfactants and SIRPα signaling in SSNS/MCD.

12.
Nutrients ; 14(10)2022 May 15.
Article En | MEDLINE | ID: mdl-35631211

Improper hydration habits are commonly disregarded as a risk factor for the development of chronic diseases. Consuming an intake of water below recommendations (underhydration) in addition to the substitution of sugar-sweetened beverages (SSB) for water are habits deeply ingrained in several countries. This behavior is due to voluntary and involuntary dehydration; and because young children are exposed to SSB, the preference for a sweet taste is profoundly implanted in the brain. Underhydration and SSB intake lead to mild hyperosmolarity, which stimulates biologic processes, such as the stimulation of vasopressin and the polyol-fructose pathway, which restore osmolarity to normal but at the expense of the continued activation of these biological systems. Unfortunately, chronic activation of the vasopressin and polyol-fructose pathways has been shown to mediate many diseases, such as obesity, diabetes, metabolic syndrome, chronic kidney disease, and cardiovascular disease. It is therefore urgent that we encourage educational and promotional campaigns that promote the evaluation of personal hydration status, a greater intake of potable water, and a reduction or complete halting of the drinking of SSB.


Cardiovascular Diseases , Drinking Water , Beverages/analysis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Child , Child, Preschool , Fructose/adverse effects , Habits , Humans
13.
J. bras. nefrol ; 43(4): 572-579, Dec. 2021. tab, graf
Article En, Pt | LILACS | ID: biblio-1350906

Abstract Hyperuricemia is common in chronic kidney disease (CKD) and may be present in 50% of patients presenting for dialysis. Hyperuricemia can be secondary to impaired glomerular filtration rate (GFR) that occurs in CKD. However, hyperuricemia can also precede the development of kidney disease and predict incident CKD. Experimental studies of hyperuricemic models have found that both soluble and crystalline uric acid can cause significant kidney damage, characterized by ischemia, tubulointerstitial fibrosis, and inflammation. However, most Mendelian randomization studies failed to demonstrate a causal relationship between uric acid and CKD, and clinical trials have had variable results. Here we suggest potential explanations for the negative clinical and genetic findings, including the role of crystalline uric acid, intracellular uric acid, and xanthine oxidase activity in uric acid-mediated kidney injury. We propose future clinical trials as well as an algorithm for treatment of hyperuricemia in patients with CKD.


Resumo A hiperuricemia é comum na doença renal crônica (DRC) e pode estar presente em até 50% dos pacientes que se apresentam para diálise. A hiperuricemia pode ser secundária ao comprometimento da taxa de filtração glomerular (TFG) que ocorre na DRC. No entanto, ela também pode preceder o desenvolvimento da doença renal e mesmo prever uma DRC incidente. Estudos experimentais de modelos hiperuricêmicos descobriram que tanto o ácido úrico solúvel quanto o cristalino podem causar danos renais significativos, caracterizados por isquemia, fibrose tubulointersticial e inflamação. Entretanto, a maioria dos estudos de randomização Mendeliana falhou em demonstrar uma relação causal entre o ácido úrico e a DRC, e os ensaios clínicos têm apresentado resultados variáveis. Aqui sugerimos explicações potenciais para os achados clínicos e genéticos negativos, incluindo o papel do ácido úrico cristalino, do ácido úrico intracelular e da atividade da xantina oxidase na lesão renal mediada por ácido úrico. Propomos ensaios clínicos futuros, bem como um algoritmo para o tratamento de hiperuricemia em pacientes com DRC.


Humans , Hyperuricemia/complications , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Uric Acid , Renal Dialysis , Glomerular Filtration Rate
14.
Nat Metab ; 3(9): 1189-1201, 2021 09.
Article En | MEDLINE | ID: mdl-34552272

Umami refers to the savoury taste that is mediated by monosodium glutamate (MSG) and enhanced by inosine monophosphate and other nucleotides. Umami foods have been suggested to increase the risk for obesity and metabolic syndrome but the mechanism is not understood. Here we show that MSG induces obesity, hypothalamic inflammation and central leptin resistance in male mice through the induction of AMP deaminase 2 and purine degradation. Mice lacking AMP deaminase 2 in both hepatocytes and neurons are protected from MSG-induced metabolic syndrome. This protection can be overcome by supplementation with inosine monophosphate, most probably owing to its degradation to uric acid as the effect can be blocked with allopurinol. Thus, umami foods induce obesity and metabolic syndrome by engaging the same purine nucleotide degradation pathway that is also activated by fructose and salt consumption. We suggest that the three tastes-sweet, salt and umami-developed to encourage food intake to facilitate energy storage and survival but drive obesity and diabetes in the setting of excess intake through similar mechanisms.


Metabolic Syndrome/metabolism , Nucleotides/metabolism , Obesity/metabolism , Taste , Uric Acid/metabolism , Animals , Energy Intake/drug effects , Metabolic Syndrome/chemically induced , Mice , Sodium Glutamate/pharmacology
15.
Cells ; 10(8)2021 08 17.
Article En | MEDLINE | ID: mdl-34440885

Since activated macrophages express a functional folate receptor ß (FRß), targeting this macrophage population with folate-linked drugs could increase selectivity to treat inflammatory diseases. Using a macrophage-mediated anti-glomerular basement membrane (anti-GBM) glomerulonephritis (GN) in WKY rats, we investigated the effect of a novel folic acid-aminopterin (AMT) conjugate (EC2319) designed to intracellularly deliver AMT via the FR. We found that treatment with EC2319 significantly attenuated kidney injury and preserved renal function. Kidney protection with EC2319 was blocked by a folate competitor, indicating that its mechanism of action was specifically FRß-mediated. Notably, treatment with methotrexate (MTX), another folic acid antagonist related to AMT, did not protect from kidney damage. EC2319 reduced glomerular and interstitial macrophage infiltration and decreased M1 macrophage recruitment but not M2 macrophages. The expression of CCL2 and the pro-fibrotic cytokine TGF-ß were also reduced in nephritic glomeruli with EC2319 treatment. In EC2319-treated rats, there was a significant decrease in the deposition of collagens. In nephritic kidneys, FRß was expressed on periglomerular macrophages and macrophages present in the crescents, but its expression was not observed in normal kidneys. These data indicate that selectively targeting the activated macrophage population could represent a novel means for treating anti-GBM GN and other acute crescentic glomerulonephritis.


Folate Receptor 2/metabolism , Glomerulonephritis/drug therapy , Glomerulonephritis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/metabolism , Aminopterin/chemistry , Aminopterin/therapeutic use , Animals , Fibrosis/drug therapy , Fibrosis/metabolism , Folic Acid/chemistry , Folic Acid/therapeutic use , Macrophages/drug effects , Methotrexate/therapeutic use , Rats
16.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article En | MEDLINE | ID: mdl-34201751

Cylindromatosis (CYLD) is a deubiquitinase (DUB) enzyme that was initially characterized as a tumor suppressor of adnexal skin tumors in patients with CYLD syndrome. Later, it was also shown that the expression of functionally inactive mutated forms of CYLD promoted tumor development and progression of non-melanoma skin cancer (NMSC). However, the ability of wild-type CYLD to inhibit skin tumorigenesis in vivo in immunocompetent mice has not been proved. Herein, we generated transgenic mice that express the wild type form of CYLD under the control of the keratin 5 (K5) promoter (K5-CYLDwt mice) and analyzed the skin properties of these transgenic mice by WB and immunohistochemistry, studied the survival and proliferating characteristics of primary keratinocytes, and performed chemical skin carcinogenesis experiments. As a result, we found a reduced activation of the nuclear factor kappa B (NF-κB) pathway in the skin of K5-CYLDwt mice in response to tumor necrosis factor-α (TNF-α); accordingly, when subjected to insults, K5-CYLDwt keratinocytes are prone to apoptosis and are protected from excessive hyperproliferation. Skin carcinogenesis assays showed inhibition of tumor development in K5-CYLDwt mice. As a mechanism of this tumor suppressor activity, we found that a moderate increase in CYLD expression levels reduced NF-κB activation, which favored the differentiation of tumor epidermal cells and inhibited its proliferation; moreover, it decreased tumor angiogenesis and inflammation. Altogether, our results suggest that increased levels of CYLD may be useful for anti-skin cancer therapy.


Carcinoma, Squamous Cell/pathology , Deubiquitinating Enzyme CYLD/genetics , Skin Neoplasms/pathology , Animals , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Deubiquitinating Enzyme CYLD/metabolism , Genes, Tumor Suppressor , Immunocompetence , Keratinocytes/drug effects , Keratinocytes/pathology , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , NF-kappa B/metabolism , Neovascularization, Pathologic/genetics , Phorbol Esters/toxicity , Skin Neoplasms/blood supply , Skin Neoplasms/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
17.
Front Immunol ; 12: 694457, 2021.
Article En | MEDLINE | ID: mdl-34220855

Chronic low-grade inflammation underlies the pathogenesis of non-communicable diseases, including chronic kidney diseases (CKD). Inflammation is a biologically active process accompanied with biochemical changes involving energy, amino acid, lipid and nucleotides. Recently, glycolysis has been observed to be increased in several inflammatory disorders, including several types of kidney disease. However, the factors initiating glycolysis remains unclear. Added sugars containing fructose are present in nearly 70 percent of processed foods and have been implicated in the etiology of many non-communicable diseases. In the kidney, fructose is transported into the proximal tubules via several transporters to mediate pathophysiological processes. Fructose can be generated in the kidney during glucose reabsorption (such as in diabetes) as well as from intra-renal hypoxia that occurs in CKD. Fructose metabolism also provides biosynthetic precursors for inflammation by switching the intracellular metabolic profile from mitochondrial oxidative phosphorylation to glycolysis despite the availability of oxygen, which is similar to the Warburg effect in cancer. Importantly, uric acid, a byproduct of fructose metabolism, likely plays a key role in favoring glycolysis by stimulating inflammation and suppressing aconitase in the tricarboxylic acid cycle. A consequent accumulation of glycolytic intermediates connects to the production of biosynthetic precursors, proteins, lipids, and nucleic acids, to meet the increased energy demand for the local inflammation. Here, we discuss the possibility of fructose and uric acid may mediate a metabolic switch toward glycolysis in CKD. We also suggest that sodium-glucose cotransporter 2 (SGLT2) inhibitors may slow the progression of CKD by reducing intrarenal glucose, and subsequently fructose levels.


Diabetes Mellitus/drug therapy , Fructose/metabolism , Glycolysis/drug effects , Kidney/drug effects , Renal Insufficiency, Chronic/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Animals , Cell Hypoxia , Diabetes Mellitus/diagnosis , Diabetes Mellitus/metabolism , Disease Progression , Fibrosis , Humans , Inflammation Mediators/metabolism , Kidney/metabolism , Kidney/pathology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/metabolism , Uric Acid/metabolism
18.
Nutrients ; 13(6)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199607

BACKGROUND: The consumption of sweetened beverages is associated with increased risk of metabolic syndrome, cardiovascular disease, and type 2 diabetes mellitus. OBJECTIVE: We hypothesized that the metabolic effects of fructose in sugary beverages might be modulated by the speed of ingestion in addition to the overall amount. DESIGN: Thirty healthy subjects free of any disease and medication were recruited into two groups. After overnight fasting, subjects in group 1 drank 500 mL of apple juice over an hour by drinking 125 mL every 15 min, while subjects in group 2 drank 500 mL of apple juice over 5 min. Blood samples were collected at time zero and 15, 30, 60, and 120 min after ingestion to be analyzed for serum glucose, insulin, homeostatic model assessment (HOMA-IR) score, fibroblast growth factor 21, copeptin, osmolarity, sodium, blood urea nitrogen (BUN), lactate, uric acid, and phosphate levels. RESULTS: Serum glucose, insulin, HOMA-IR, fibroblast growth factor 21, copeptin, osmolarity, sodium, BUN, and lactate levels increased following apple juice ingestion. The increases were greater in the fast-drinking group, which were more significant after 15 min and 30 min compared to baseline. The changes in uric acid were not statistically different between the groups. Phosphate levels significantly increased only in the fast-drinking group. CONCLUSION: Fast ingestion of 100% apple juice causes a significantly greater metabolic response, which may be associated with negative long-term outcomes. Our findings suggest that the rate of ingestion must be considered when evaluating the metabolic impacts of sweetened beverage consumption.


Eating , Fructose/adverse effects , Metabolic Syndrome/etiology , Sugar-Sweetened Beverages/adverse effects , Sugars/adverse effects , Adult , Blood Glucose , Diabetes Mellitus, Type 2/complications , Female , Fibroblast Growth Factors , Fruit and Vegetable Juices , Glucose , Glycopeptides , Humans , Insulin , Male , Malus , Osmolar Concentration , Protein Precursors/metabolism , Uric Acid/blood , Young Adult
19.
Alcohol Clin Exp Res ; 45(8): 1519-1526, 2021 08.
Article En | MEDLINE | ID: mdl-34120350

In this narrative review, we present the hypothesis that key mutations in two genes, occurring 15 and 10 million years ago (MYA), were individually and then collectively adaptive for ancestral humans during periods of starvation, but are maladaptive in modern civilization (i.e., "thrifty genes"), with the consequence that these genes not only increase our risk today for obesity, but also for alcoholism. Both mutations occurred when ancestral apes were experiencing loss of fruit availability during periods of profound climate change or environmental upheaval. The silencing of uricase (urate oxidase) activity 15 MYA enhanced survival by increasing the ability for fructose present in dwindling fruit to be stored as fat, a consequence of enhanced uric acid production during fructose metabolism that stimulated lipogenesis and blocked fatty acid oxidation. Likewise, a mutation in class IV alcohol dehydrogenase ~10 MYA resulted in a remarkable 40-fold increase in the capacity to oxidize ethanol (EtOH), which allowed our ancestors to ingest fallen, fermenting fruit. In turn, the EtOH ingested could activate aldose reductase that stimulates the conversion of glucose to fructose, while uric acid produced during EtOH metabolism could further enhance fructose production and metabolism. By aiding survival, these mutations would have allowed our ancestors to generate more fat, primarily from fructose, to survive changing habitats due to the Middle Miocene disruption and also during the late-Miocene aridification of East Africa. Unfortunately, the enhanced ability to metabolize and utilize EtOH may now be acting to increase our risk for alcoholism, which may be yet another consequence of once-adaptive thrifty genes.


Adaptation, Biological/genetics , Alcohol Dehydrogenase/genetics , Alcoholism/genetics , Hominidae/genetics , Urate Oxidase/genetics , Animals , Biological Evolution , Climate Change , Ethanol/metabolism , Fructose/metabolism , Hominidae/metabolism , Humans , Mutation , Selection, Genetic
20.
J Bras Nefrol ; 43(4): 572-579, 2021.
Article En, Pt | MEDLINE | ID: mdl-33704350

Hyperuricemia is common in chronic kidney disease (CKD) and may be present in 50% of patients presenting for dialysis. Hyperuricemia can be secondary to impaired glomerular filtration rate (GFR) that occurs in CKD. However, hyperuricemia can also precede the development of kidney disease and predict incident CKD. Experimental studies of hyperuricemic models have found that both soluble and crystalline uric acid can cause significant kidney damage, characterized by ischemia, tubulointerstitial fibrosis, and inflammation. However, most Mendelian randomization studies failed to demonstrate a causal relationship between uric acid and CKD, and clinical trials have had variable results. Here we suggest potential explanations for the negative clinical and genetic findings, including the role of crystalline uric acid, intracellular uric acid, and xanthine oxidase activity in uric acid-mediated kidney injury. We propose future clinical trials as well as an algorithm for treatment of hyperuricemia in patients with CKD.


Hyperuricemia , Renal Insufficiency, Chronic , Glomerular Filtration Rate , Humans , Hyperuricemia/complications , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Uric Acid
...