Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6414, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138156

RESUMEN

Deployment of ultracold atom interferometers (AI) into space will capitalize on quantum advantages and the extended freefall of persistent microgravity to provide high-precision measurement capabilities for gravitational, Earth, and planetary sciences, and to enable searches for subtle forces signifying physics beyond General Relativity and the Standard Model. NASA's Cold Atom Lab (CAL) operates onboard the International Space Station as a multi-user facility for fundamental studies of ultracold atoms and to mature space-based quantum technologies. We report on pathfinding experiments utilizing ultracold 87Rb atoms in the CAL AI. A three-pulse Mach-Zehnder interferometer was studied to understand the influence of ISS vibrations. Additionally, Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time. Finally, the CAL AI was used to remotely measure the Bragg laser photon recoil as a demonstration of the first quantum sensor using matter-wave interferometry in space.

2.
Nat Commun ; 13(1): 7889, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550117

RESUMEN

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

3.
Phys Rev Lett ; 127(10): 100401, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533345

RESUMEN

In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3/2 k_{B}·38_{-7}^{+6} pK. Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.

4.
Nature ; 562(7727): 391-395, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333576

RESUMEN

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose-Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose-Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose-Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose-Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose-Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions1,2.

5.
J Thromb Thrombolysis ; 35(2): 223-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22791080

RESUMEN

Stroke and other thromboembolic events are mainly caused by emboli from heart, aorta and other arteries. In this paper we describe a group of 5 middle-aged patients suffering from emboli caused by large thrombi in the aorta. Since the development of giant thrombi under high flow conditions in the aorta is a pathophysiological process which is not well understood, a model of flow distribution by numerically simulating the Navier-Stokes equation for an incompressible fluid was generated. This model simulated how such thrombi may develop in the aorta. We hypothesize that large thrombi issuing from the aortic vessel wall represent a underestimated entity in middleaged persons and are probably overlooked as the cause of stroke or other embolic events in some cases.


Asunto(s)
Aorta/patología , Embolia/diagnóstico , Cardiopatías/diagnóstico , Trombosis/diagnóstico , Adulto , Embolia/etiología , Femenino , Cardiopatías/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Trombosis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA