Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33858989

RESUMEN

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Animales , Cuevas/química , ADN Mitocondrial/análisis , ADN Mitocondrial/aislamiento & purificación , Sedimentos Geológicos/química , Filogenia , Población/genética , Análisis de Secuencia de ADN , Siberia , España
2.
Environ Sci Eur ; 29(1): 13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337403

RESUMEN

BACKGROUND: This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. METHODS: The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. RESULTS: The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. CONCLUSIONS: The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.

3.
Sci Total Environ ; 576: 720-737, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810758

RESUMEN

Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.

4.
Anal Biochem ; 383(2): 329-31, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18804445

RESUMEN

Buccal cell samples are considered a reliable source of DNA for genotyping studies. However, a potential drawback is the presence of exogenous DNA that is coextracted with human genomic DNA. A set of saliva and cheek swab samples, in which the fraction of human DNA varies from 10 to 96%, was genotyped using the Affymetrix Mapping 500 K Array. Samples containing less than 30% human DNA performed poorly in terms of accuracy and reliability. Therefore, we recommend quantitating the amount of human DNA in buccal samples to be used for large-scale genotyping and eliminating samples with less than 30% human DNA.


Asunto(s)
Mejilla , ADN/análisis , ADN/aislamiento & purificación , Pruebas Genéticas , Genotipo , Artefactos , ADN/genética , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...