Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 139: 104953, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34735943

RESUMEN

We propose a novel algorithm for segmenting cells of the cornea endothelium layer on confocal microscope images. To get an inter-cellular space with minimum gray-scale value and to enhance cell borders, we apply a difference of Gaussian filter before image binarization by thresholding with the minimum gray-scale value. Removal of segmented noise and artifacts is performed by automatic thresholding (using an image frequency analysis to obtain a global threshold value per image). Final segmentation of cells is achieved by fitting the largest inscribed circles into the centers of cell regions defined by the distance map of the binary images. Parameters of interest such as cell count and density, pleomorphism, polymegathism, and F-measure are computed on a publicly available data-set (Confocal Corneal Endothelial Microscopy Data Set - Rotterdam Ophthalmic Data Repository) and compared against the results of the segmentation methods included with the data set, and the results of state of the art automatic methods. The obtained results achieve higher accuracy compared to the results of the segmentation included with the data set (e.g., -proposed versus dataset in R2 and mean relative error-, cell count: 0.823, - 0.241 versus 0.017, 0.534; cell density: 0.933, - 0.067 versus 0.154, 0.639; cell polymegathism: 0.652, - 0.079 versus 0.075, 0.886; cell pleomorphism: 0.242, - 0.128 versus 0.0352, - 0.222, respectively), and are in good agreement with the results of the state of the art method.


Asunto(s)
Células Endoteliales , Procesamiento de Imagen Asistido por Computador , Algoritmos , Córnea/diagnóstico por imagen , Microscopía Confocal
2.
Med Image Anal ; 73: 102188, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34340102

RESUMEN

This work reviews the scientific literature regarding digital image processing for in vivo confocal microscopy images of the cornea. We present and discuss a selection of prominent techniques designed for semi- and automatic analysis of four areas of the cornea (epithelium, sub-basal nerve plexus, stroma and endothelium). The main context is image enhancement, detection of structures of interest, and quantification of clinical information. We have found that the preprocessing stage lacks of quantitative studies regarding the quality of the enhanced image, or its effects in subsequent steps of the image processing. Threshold values are widely used in the reviewed methods, although generally, they are selected empirically and manually. The image processing results are evaluated in many cases through comparison with gold standards not widely accepted. It is necessary to standardize values to be quantified in terms of sensitivity and specificity of methods. Most of the reviewed studies do not show an estimation of the computational cost of the image processing. We conclude that reliable, automatic, computer-assisted image analysis of the cornea is still an open issue, constituting an interesting and worthwhile area of research.


Asunto(s)
Córnea , Procesamiento de Imagen Asistido por Computador , Córnea/diagnóstico por imagen , Aumento de la Imagen , Microscopía Confocal , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...