Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Glob Chang Biol ; 25(12): 4234-4243, 2019 Dec.
Article En | MEDLINE | ID: mdl-31411780

Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conducive to high rates of methane (CH4 ) production and emission, suggesting a potentially important role in the global CH4 cycle. However, there is a lack of comprehensive flux data from diverse urban water bodies, of information on the underlying drivers, and of estimates for whole cities. Based on measurements over four seasons in a total of 32 water bodies in the city of Berlin, Germany, we calculate the total CH4 emission from various types of surface waters of a large city in temperate climate at 2.6 ± 1.7 Gg CH4 /year. The average total emission was 219 ± 490 mg CH4  m-2  day-1 . Water chemical variables were surprisingly poor predictors of total CH4 emissions, and proxies of productivity and oxygen conditions had low explanatory power as well, suggesting a complex combination of factors governing CH4 fluxes from urban surface waters. However, small water bodies (area <1 ha) typically located in urban green spaces were identified as emission hotspots. These results help constrain assessments of CH4 emissions from freshwaters in the world's growing cities, facilitating extrapolation of urban emissions to large areas, including at the global scale.


Ecosystem , Methane , Carbon Dioxide , Cities , Fresh Water , Germany , Seasons
2.
Appl Environ Microbiol ; 84(23)2018 12 01.
Article En | MEDLINE | ID: mdl-30242005

Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.IMPORTANCE Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.


Bacteria/metabolism , Iron/metabolism , Lakes/microbiology , Methane/metabolism , Methylmercury Compounds/metabolism , Microbiota , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Geologic Sediments/microbiology , Mercury/metabolism , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics
3.
Water Res ; 144: 172-182, 2018 11 01.
Article En | MEDLINE | ID: mdl-30029076

Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06-2.78 ng L-1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8-159 pg L-1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.


Methylmercury Compounds/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Ecosystem , Environmental Monitoring/methods , Europe , Lakes/chemistry , Mercury/analysis , Mercury/chemistry , Methylmercury Compounds/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis
...