Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(20): e2201481, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35508805

RESUMEN

Red blood cells (RBCs) are cleared from the circulation when they become damaged or display aging signals targeted by macrophages. This process occurs mainly in the spleen, where blood flows through submicrometric constrictions called inter-endothelial slits (IES), subjecting RBCs to large-amplitude deformations. In this work, RBCs are circulated through microfluidic devices containing microchannels that replicate the IES. The cyclic mechanical stresses experienced by the cells affect their biophysical properties and molecular composition, accelerating cell aging. Specifically, RBCs quickly transition to a more spherical, less deformable phenotype that hinders microchannel passage, causing hemolysis. This transition is associated with the release of membrane vesicles, which self-extinguishes as the spacing between membrane-cytoskeleton linkers becomes tighter. Proteomics analysis of the mechanically aged RBCs reveals significant losses of essential proteins involved in antioxidant protection, gas transport, and cell metabolism. Finally, it is shown that these changes make mechanically aged RBCs more susceptible to macrophage phagocytosis. These results provide a comprehensive model explaining how physical stress induces RBC clearance in the spleen. The data also suggest new biomarkers of early "hemodamage" and inflammation preceding hemolysis in RBCs subjected to mechanical stress.


Asunto(s)
Membrana Eritrocítica , Hemólisis , Membrana Eritrocítica/metabolismo , Humanos , Macrófagos , Fagocitosis , Estrés Mecánico
2.
PLoS Pathog ; 18(3): e1010309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35316298

RESUMEN

The eggs of the parasitic blood fluke, Schistosoma, are the main drivers of the chronic pathologies associated with schistosomiasis, a disease of poverty afflicting approximately 220 million people worldwide. Eggs laid by Schistosoma mansoni in the bloodstream of the host are encapsulated by vascular endothelial cells (VECs), the first step in the migration of the egg from the blood stream into the lumen of the gut and eventual exit from the body. The biomechanics associated with encapsulation and extravasation of the egg are poorly understood. We demonstrate that S. mansoni eggs induce VECs to form two types of membrane extensions during encapsulation; filopodia that probe eggshell surfaces and intercellular nanotubes that presumably facilitate VEC communication. Encapsulation efficiency, the number of filopodia and intercellular nanotubes, and the length of these structures depend on the egg's vitality and, to a lesser degree, its maturation state. During encapsulation, live eggs induce VEC contractility and membranous structures formation in a Rho/ROCK pathway-dependent manner. Using elastic hydrogels embedded with fluorescent microbeads as substrates to culture VECs, live eggs induce VECs to exert significantly greater contractile forces during encapsulation than dead eggs, which leads to 3D deformations on both the VEC monolayer and the flexible substrate underneath. These significant mechanical deformations cause the VEC monolayer tension to fluctuate with the eventual rupture of VEC junctions, thus facilitating egg transit out of the blood vessel. Overall, our data on the mechanical interplay between host VECs and the schistosome egg improve our understanding of how this parasite manipulates its immediate environment to maintain disease transmission.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Células Endoteliales , Humanos , Óvulo , Schistosoma mansoni , Esquistosomiasis mansoni/parasitología
3.
Pulm Circ ; 10(2): 2045894020922118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489641

RESUMEN

The risk and progression of pulmonary vascular disease in patients with congenital heart disease is dependent on the hemodynamics associated with different lesions. However, the underlying mechanisms are not understood. Endothelin-1 is a potent vasoconstrictor that plays a key role in the pathology of pulmonary vascular disease. We utilized two ovine models of congenital heart disease: (1) fetal aortopulmonary graft placement (shunt), resulting in increased flow and pressure; and (2) fetal ligation of the left pulmonary artery resulting in increased flow and normal pressure to the right lung, to investigate the hypothesis that high pressure and flow, but not flow alone, upregulates endothelin-1 signaling. Lung tissue and pulmonary arterial endothelial cells were harvested from control, shunt, and the right lung of left pulmonary artery lambs at 3-7 weeks of age. We found that lung preproendothelin-1 mRNA and protein expression were increased in shunt lambs compared to controls. Preproendothelin-1 mRNA expression was modestly increased, and protein was unchanged in left pulmonary artery lambs. These changes resulted in increased lung endothelin-1 levels in shunt lambs, while left pulmonary artery levels were similar to controls. Pulmonary arterial endothelial cells exposed to increased shear stress decreased endothelin-1 levels by five-fold, while cyclic stretch increased levels by 1.5-fold. These data suggest that pressure or an additive effect of pressure and flow, rather than increased flow alone, is the principal driver of increased endothelin signaling in congenital heart disease. Defining the molecular drivers of the pathobiology of pulmonary vascular disease due to differing mechanical forces will allow for a more targeted therapeutic approach.

4.
Cell Rep ; 21(8): 2183-2197, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166609

RESUMEN

A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM) and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and classical GBMs and is lost during their transition toward a mesenchymal subtype. GPR56 loss of function promotes mesenchymal differentiation and radioresistance of glioma initiating cells both in vitro and in vivo. Accordingly, a low GPR56-associated signature is prognostic of a poor outcome in GBM patients even within non-G-CIMP GBMs. Mechanistically, we reveal GPR56 as an inhibitor of the nuclear factor kappa B (NF-κB) signaling pathway, thereby providing the rationale by which this receptor prevents mesenchymal differentiation and radioresistance. A pan-cancer analysis suggests that GPR56 might be an inhibitor of the mesenchymal transition across multiple tumor types beyond GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Humanos , FN-kappa B/metabolismo , Transducción de Señal/fisiología
5.
Int J Radiat Oncol Biol Phys ; 65(1): 138-42, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16618576

RESUMEN

PURPOSE: Curative radiotherapy for non-small-cell lung cancer is a difficult challenge, despite the use of conformal radiotherapy. Optimal three-dimensional delineation of treatment volumes is essential for improvement of local control and for limiting of tissue toxicity. MATERIAL AND METHODS: A planning course on clinical practice of lung cancer was held in Barcelona. A questionnaire was given concerning (1) patient positioning, (2) planning-computed tomography scan, (3) accounting for tumor mobility, (4) investigative-procedure respiration-gated radiotherapy and breath-holding maneuvers, (5) generation of target volumes, (6) treatment planning, and (7) treatment delivery. This questionnaire was made to determine the Spanish application of European recommendations. RESULTS: On the negative side, 1 hospital did not use three-dimensional tools, less than 50% used immobilization devices, and 55.6% used computed tomography slices of greater than 5 mm. On the positive side, 70.4% did not use standard margins for gross target volume derived from a computed tomography scan, 92.6% agreed with the inclusion of Naruke anatomic criteria of 1 cm or more in gross target volume planning, and 75% used V20 to estimate the risk of pneumonitis. CONCLUSIONS: This study is the first validation of European recommendations for treatment planning and execution of radiotherapy in lung cancer. The main conclusion is the need to improve the negative aspects determined.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Oncología por Radiación/normas , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia Conformacional/normas , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Fraccionamiento de la Dosis de Radiación , Encuestas de Atención de la Salud , Humanos , Imagenología Tridimensional , Inmovilización/estadística & datos numéricos , Neoplasias Pulmonares/diagnóstico por imagen , Movimiento , Dosificación Radioterapéutica , Respiración , España , Tomografía Computarizada por Rayos X/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA