Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Synapse ; 78(1): e22283, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837643

RESUMEN

Small conductance calcium-activated potassium (SK) channels are well-known regulators of neuronal excitability. In the thalamic hub, SK2 channels act as pacemakers of thalamic reticular neurons, which play a key role in the thalamocortical circuit. Several disease-linked genes are highly enriched in these neurons, including genes known to be associated with schizophrenia and attentional disorders, which could affect neuronal firing. The present study assessed the effect of pharmacological modulation of SK channels in the firing pattern and intrinsic properties of thalamic reticular neurons by performing whole cell patch clamp recordings in brain slices. Two SK positive allosteric modulators and one negative allosteric modulator were used: CyPPA, NS309, and NS8593, respectively. By acting on the burst afterhyperpolarization (AHP), negative modulation of SK channels resulted in increased action potential (AP) firing, increased burst duration, and decreased intervals between bursts. Conversely, both CyPPA and NS309 increased the afterburst AHP, prolonging the interburst interval, which additionally resulted in reduced AP firing in the case of NS309. Alterations in SK channel activity would be expected to alter functioning of thalamocortical circuits. Targeting SK channels could be promising in treating disorders involving thalamic reticular dysfunction such as psychiatric and neurodevelopmental disorders.


Asunto(s)
Neuronas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Potenciales de Acción , Núcleos Talámicos
2.
J Psychopharmacol ; 37(8): 822-835, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165655

RESUMEN

BACKGROUND: Understanding the effects of the N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine on brain function is of considerable interest due to the discovery of its fast-acting antidepressant properties. It is well known that gamma oscillations are increased when ketamine is administered to rodents and humans, and increases in the auditory steady-state response (ASSR) have also been observed. AIMS: To elucidate the cellular substrate of the increase in network activity and synchrony observed by sub-anesthetic doses of ketamine, the aim was to investigate spike timing and regularity and determine how this is affected by the animal's motor state. METHODS: Single unit activity and local field potentials from the auditory cortex of awake, freely moving rats were recorded with microelectrode arrays during an ASSR paradigm. RESULTS: Ketamine administration yielded a significant increase in ASSR power and phase locking, both significantly modulated by motor activity. Before drug administration, putative fast-spiking interneurons (FSIs) were significantly more entrained to the stimulus than putative pyramidal neurons (PYRs). The degree of entrainment significantly increased at lower doses of ketamine (3 and 10 mg/kg for FSIs, 10 mg/kg for PYRs). At the highest dose (30 mg/kg), a strong increase in tonic firing of PYRs was observed. CONCLUSIONS: These findings suggest an involvement of FSIs in the increased network synchrony and provide a possible cellular explanation for the well-documented effects of ketamine-induced increase in power and synchronicity during ASSR. The results support the importance to evaluate different motor states separately for more translational preclinical research.


Asunto(s)
Anestésicos , Corteza Auditiva , Ketamina , Humanos , Ratas , Animales , Ketamina/farmacología , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos , Estimulación Acústica/métodos , Anestésicos/farmacología
3.
Front Psychiatry ; 13: 737295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153870

RESUMEN

Ketamine is a non-competitive N-Methyl-D-aspartate receptor (NMDAR) antagonist used in the clinic to initiate and maintain anaesthesia; it induces dissociative states and has emerged as a breakthrough therapy for major depressive disorder. Using local field potential recordings in freely moving rats, we studied resting state EEG profiles induced by co-administering ketamine with either: clozapine, a highly efficacious antipsychotic; or naltrexone, an opioid receptor antagonist reported to block the acute antidepressant effects of ketamine. As human electroencephalography (EEG) is predominantly recorded in a passive state, head-mounted accelerometers were used with rats to determine active and passive states at a high temporal resolution to offer the highest translatability. In general, pharmacological effects for the three drugs were more pronounced in (or restricted to) the passive state. Specifically, during inactive periods clozapine induced increases in delta (0.1-4 Hz), gamma (30-60 Hz) and higher frequencies (>100 Hz). Importantly, it reversed the ketamine-induced reduction in low beta power (10-20 Hz) and potentiated ketamine-induced increases in gamma and high frequency oscillations (130-160 Hz). Naltrexone inhibited frequencies above 50 Hz and significantly reduced the ketamine-induced increase in high frequency oscillations. However, some frequency band changes, such as clozapine-induced decreases in delta power, were only seen in locomoting rats. These results emphasise the potential in differentiating between activity states to capture drug effects and translate to human resting state EEG. Furthermore, the differential reversal of ketamine-induced EEG effects by clozapine and naltrexone may have implications for the understanding of psychotomimetic as well as rapid antidepressant effects of ketamine.

4.
Eur J Neurosci ; 29(9): 1883-95, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19473240

RESUMEN

Small conductance Ca(2+) -activated K(+) (SK) channels play a prominent role in modulating the spontaneous activity of dopamine (DA) neurons as well as their response to synaptically-released glutamate. SK channel gating is dependent on Ca(2+) binding to constitutively bound calmodulin, which itself is subject to endogenous and exogenous modulation. In the present study, patch-clamp recording techniques were used to examine the relationship between the apparent Ca(2+) affinity of cloned SK3 channels expressed in cultured human embryonic kidney 293 cells and the excitability of DA neurons in slices from rat substantia nigra using the positive and negative SK channel modulators, 6,7-dichloro-1H-indole-2,3-dione-3-oxime and R-N-(benzimidazol-2-yl)-1,2,3,4-tetrohydro-1-naphtylamine. Increasing the apparent Ca(2+) affinity of SK channels decreased the responsiveness of DA neurons to depolarizing current pulses, enhanced spike frequency adaptation and slowed spontaneous firing, effects attributable to an increase in the amplitude and duration of an apamin-sensitive afterhyperpolarization. In contrast, decreasing the apparent Ca(2+) affinity of SK channels enhanced DA neuronal excitability and changed the firing pattern from a pacemaker to an irregular or bursting discharge. Both the reduction in apparent Ca(2+) affinity and the bursting associated with negative SK channel modulation were gradually surmounted by co-application of the positive SK channel modulator. These results underscore the importance of SK channels in 'tuning' the excitability of DA neurons and demonstrate that gating modulation, in a manner analogous to physiological regulation of SK channels in vivo, represents a means of altering the response of DA neurons to membrane depolarization.


Asunto(s)
Calcio/metabolismo , Dopamina/metabolismo , Mesencéfalo/fisiología , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , 1-Naftilamina/administración & dosificación , 1-Naftilamina/análogos & derivados , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Apamina/administración & dosificación , Línea Celular , Fármacos del Sistema Nervioso Central/administración & dosificación , Humanos , Técnicas In Vitro , Indoles/administración & dosificación , Masculino , Mesencéfalo/efectos de los fármacos , Neuronas/efectos de los fármacos , Oximas/administración & dosificación , Técnicas de Placa-Clamp , Periodicidad , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...