Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329810

RESUMEN

Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.


Asunto(s)
Colitis Ulcerosa , Colitis , Neoplasias Colorrectales , Humanos , Ratones , Animales , Neutrófilos/patología , Metaloproteinasa 14 de la Matriz , Colitis Ulcerosa/metabolismo , Neovascularización Patológica/metabolismo , Colitis/metabolismo , Neoplasias Colorrectales/patología
2.
J Immunol ; 212(5): 881-893, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189569

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression. Within the intestinal epithelium, miRNAs play a critical role in gut homeostasis, and aberrant miRNA expression has been implicated in various disorders associated with intestinal inflammation and barrier disruption. In this study, we sought to profile changes in intestinal epithelial cell miRNA expression after alcohol and burn injury and elucidate their impact on inflammation and barrier integrity. Using a mouse model of acute ethanol intoxication and burn injury, we found that small intestinal epithelial cell expression of miR-146a is significantly decreased 1 d following injury. Using in vitro studies, we show that reduced miR-146a promotes intestinal epithelial cell inflammation by promoting p38 MAPK signaling via increased levels of its target TRAF6 (TNFR-associated factor 6). Furthermore, we demonstrate that in vivo miR-146a overexpression significantly inhibits intestinal inflammation 1 d following combined injury and potentially supports intestinal barrier homeostasis. Overall, this study highlights the important impact that miRNA expression can have on intestinal homeostasis and the valuable potential of harnessing aberrant miRNA expression as a therapeutic target to control intestinal inflammation.


Asunto(s)
Quemaduras , MicroARNs , Humanos , MicroARNs/metabolismo , Etanol , Inflamación/genética , Células Epiteliales/metabolismo , Quemaduras/complicaciones
3.
Immunohorizons ; 6(8): 600-613, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35973751

RESUMEN

Alcohol intoxication combined with burn injury can lead to life-threatening complications, including sepsis, multiple organ failure, and death. After an acute burn, the gastrointestinal system becomes hypoxic because of fluid loss and reduction of intestinal blood flow. This can cause perturbations in the intestinal epithelial barrier, immune function, and the composition of the gut microbiome. Increased gut permeability leads to proinflammatory signaling, contributing to further damage to the intestinal barrier. Recent studies have suggested that IL-27 plays an anti-inflammatory role, which may be beneficial in intestinal barrier repair. Therefore, in this study, we examined the effect of ethanol and burn injury on IL-27 in the small intestine, as well as the potential beneficial role of IL-27 in restoring the intestinal barrier after intoxication and burn. Male C57BL/6 mice were gavaged with 2.9 g/kg ethanol before receiving a ∼12.5% total body surface area scald burn with or without rIL-27 in resuscitation fluid. Our results demonstrate that IL-27-producing cells are reduced in the small intestine after injury. When IL-27 is supplemented in resuscitation fluid, we were able to restore intestinal barrier integrity and transit, mediated through increased intestinal epithelial cell proliferation, reduced inflammatory cytokines, and increased anti-inflammatory cytokine IL-10. We also observed increased gene expression of tight junction proteins. These findings suggest that IL-27 may be a contributor to maintaining proper intestinal barrier function after injury through multiple mechanisms, including preventing excess inflammation and promoting intestinal epithelial cell proliferation and tight junction integrity.


Asunto(s)
Intoxicación Alcohólica , Quemaduras , Interleucina-27 , Interleucinas , Intoxicación Alcohólica/complicaciones , Intoxicación Alcohólica/metabolismo , Animales , Quemaduras/complicaciones , Quemaduras/metabolismo , Citocinas/metabolismo , Etanol , Interleucinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Immunohorizons ; 6(1): 64-75, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058308

RESUMEN

Our previous studies have shown that ethanol intoxication combined with burn injury increases intestinal bacterial growth, disrupts the intestinal barrier, and enhances bacterial translocation. Additionally, studies show that Th17 effector cytokines IL-17 and IL-22, which are dependent on IL-23, play important roles in maintaining intestine mucosal barrier integrity. Recent findings suggest neutrophils are a significant source of IL-17 and IL-22. We determined the effect of ethanol and burn injury on neutrophil IL-17 and IL-22 production, as well as their ability to phagocytose and in bacterial clearance, and whether these effects are modulated by IL-23. Mice were given ethanol 4 h prior to receiving ∼12.5% total body surface area burn and were euthanized day 1 after injury. We observed that intoxication combined with burn injury significantly decreases blood neutrophil phagocytosis and bacteria killing, as well as their ability to produce IL-17 and IL-22, compared with sham vehicle mice. The treatment of neutrophils with rIL-23 significantly increases IL-22 and IL-17 release and promotes expression of IL-23R, retinoic acid-related orphan receptor γt, Lipocalin2, and Nod-like receptor 2 following ethanol and burn injury. Furthermore, IL-22- and IL-17-producing neutrophils have enhanced neutrophil extracellular trap formation and bacterial killing ability, which are dependent on IL-23. Finally, although we observed that peritoneal neutrophils harvested after casein treatment are functionally different from blood neutrophils, both blood and peritoneal neutrophils exhibited the same response to rIL-23 treatment. Together these findings suggest that IL-23 promotes neutrophil IL-22 and IL-17 production and their ability to kill bacteria following ethanol and burn injury.


Asunto(s)
Intoxicación Alcohólica/metabolismo , Quemaduras/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Neutrófilos/metabolismo , Intoxicación Alcohólica/microbiología , Animales , Quemaduras/patología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Etanol/toxicidad , Trampas Extracelulares/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Interleucina-22
5.
Shock ; 57(2): 230-237, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482318

RESUMEN

ABSTRACT: Traumatic injuries, such as burn, are often complicated by ethanol intoxication at the time of injury. This leads to a myriad of complications and post-burn pathologies exacerbated by aberrant immune responses. Recent findings suggest that immune cell dysfunction in the gastrointestinal system is particularly important in deleterious outcomes associated with burn injuries. In particular, intoxication at the time of burn injury leads to compromised intestinal T cell responses, which can diminish intestinal immunity and promote bacterial translocation, allowing for increased secondary infections in the injured host and associated sequelae, such as multiple organ failure and sepsis. Regulatory T cells (Treg) have been identified as important mediators of suppressing effector T cell function. Therefore, the goal of this study was to assess the effects of ethanol intoxication and burn injury on Treg populations in small intestinal immune organs. We also evaluated the suppressive capability of Tregs isolated from injured animals. Male C57BL/6 mice were gavaged with 2.9 g/kg ethanol before receiving a ∼12.5% total body surface area scald burn. One day after injury, we identified a significant increase in Tregs number in small intestine Peyer's patches (∼×1.5) and lamina propria (∼×2). Tregs-producing cytokine IL-10 were also increased in both tissues. Finally, Tregs isolated from ethanol and burn-injured mice were able to suppress proliferation of effector T cells to a greater degree than sham vehicle Tregs. This was accompanied by increased levels of IL-10 and decreased levels of pro-proliferative cytokine IL-2 in cultures containing ethanol + burn Tregs compared with sham Tregs. These findings suggest that Treg populations are increased in intestinal tissues 1 day following ethanol intoxication and burn injury. Tregs isolated from ethanol and burn-injured animals also exhibit a greater suppression of effector T cell proliferation, which may contribute to altered T cell responses following injury.


Asunto(s)
Intoxicación Alcohólica/inmunología , Quemaduras/inmunología , Intestino Delgado/inmunología , Linfocitos T Reguladores/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Shock ; 56(3): 329-344, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481548

RESUMEN

ABSTRACT: Burn injuries are a common form of traumatic injury that leads to significant morbidity and mortality worldwide. Burn injuries are characterized by inflammatory processes and alterations in numerous organ systems and functions. Recently, it has become apparent that the gastrointestinal bacterial microbiome is a key component of regulating the immune response and recovery from burn and can also contribute to significant detrimental sequelae after injury, such as sepsis and multiple organ failure. Microbial dysbiosis has been linked to multiple disease states; however, its role in exacerbating acute traumatic injuries, such as burn, is poorly understood. In this article, we review studies that document changes in the intestinal microbiome after burn injury, assess the implications in post-burn pathogenesis, and the potential for further discovery and research.


Asunto(s)
Quemaduras/complicaciones , Quemaduras/patología , Disbiosis/complicaciones , Disbiosis/patología , Microbioma Gastrointestinal/fisiología , Humanos
7.
Alcohol ; 87: 89-95, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32353591

RESUMEN

On November 15, 2019, the 24th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite conference during the annual Society for Leukocyte Biology meeting in Boston, Massachusetts. The 2019 meeting focused on alcohol, immunity, and organ damage, and included two plenary sessions. The first session highlighted new research exploring the mechanisms of alcohol-induced inflammation and liver disease, including effects on lipidomics and lipophagy, regulatory T cells, epigenetics, epithelial cells, and age-related changes in the gut. The second session covered alcohol-induced injury of other organs, encompassing diverse areas of research ranging from neurodegeneration, to lung barrier function, to colon carcinogenesis, to effects on viral infection. The discussions also highlighted current laboratory and clinical research used to identify biomarkers of alcohol use and disease.


Asunto(s)
Consumo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas/efectos adversos , Alcoholismo/diagnóstico , Biomarcadores , Boston , Congresos como Asunto , Etanol/toxicidad , Humanos , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...