Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
Sci Data ; 11(1): 590, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839770

The Individual Brain Charting (IBC) is a multi-task functional Magnetic Resonance Imaging dataset acquired at high spatial-resolution and dedicated to the cognitive mapping of the human brain. It consists in the deep phenotyping of twelve individuals, covering a broad range of psychological domains suitable for functional-atlasing applications. Here, we present the inclusion of task data from both naturalistic stimuli and trial-based designs, to uncover structures of brain activation. We rely on the Fast Shared Response Model (FastSRM) to provide a data-driven solution for modelling naturalistic stimuli, typically containing many features. We show that data from left-out runs can be reconstructed using FastSRM, enabling the extraction of networks from the visual, auditory and language systems. We also present the topographic organization of the visual system through retinotopy. In total, six new tasks were added to IBC, wherein four trial-based retinotopic tasks contributed with a mapping of the visual field to the cortex. IBC is open access: source plus derivatives imaging data and meta-data are available in public repositories.


Brain Mapping , Brain , Magnetic Resonance Imaging , Humans , Brain/physiology , Brain/diagnostic imaging , Motion Pictures , Visual Cortex/physiology , Visual Cortex/diagnostic imaging
2.
Comput Med Imaging Graph ; 115: 102396, 2024 Jul.
Article En | MEDLINE | ID: mdl-38744197

Analyzing the basal ganglia following an early brain lesion is crucial due to their noteworthy role in sensory-motor functions. However, the segmentation of these subcortical structures on MRI is challenging in children and is further complicated by the presence of a lesion. Although current deep neural networks (DNN) perform well in segmenting subcortical brain structures in healthy brains, they lack robustness when faced with lesion variability, leading to structural inconsistencies. Given the established spatial organization of the basal ganglia, we propose enhancing the DNN-based segmentation through post-processing with a graph neural network (GNN). The GNN conducts node classification on graphs encoding both class probabilities and spatial information regarding the regions segmented by the DNN. In this study, we focus on neonatal arterial ischemic stroke (NAIS) in children. The approach is evaluated on both healthy children and children after NAIS using three DNN backbones: U-Net, UNETr, and MSGSE-Net. The results show an improvement in segmentation performance, with an increase in the median Dice score by up to 4% and a reduction in the median Hausdorff distance (HD) by up to 93% for healthy children (from 36.45 to 2.57) and up to 91% for children suffering from NAIS (from 40.64 to 3.50). The performance of the method is compared with atlas-based methods. Severe cases of neonatal stroke result in a decline in performance in the injured hemisphere, without negatively affecting the segmentation of the contra-injured hemisphere. Furthermore, the approach demonstrates resilience to small training datasets, a widespread challenge in the medical field, particularly in pediatrics and for rare pathologies.


Basal Ganglia , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Basal Ganglia/diagnostic imaging , Magnetic Resonance Imaging/methods , Infant, Newborn , Child , Child, Preschool , Ischemic Stroke/diagnostic imaging , Infant , Image Processing, Computer-Assisted/methods , Deep Learning
3.
Neuropsychol Rehabil ; : 1-39, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38430123

The objective is to study the effectiveness of working memory (WM) rehabilitation after Acquired brain injury (ABI) and multiple sclerosis (MS). A systematic database search of published studies, following PRISMA recommendations, with assessment of methodological quality and risk of bias, was conducted. The results were analysed according to the rehabilitation method used. 31 studies (including 14 class I) were included, and 11 different training programs were identified. Despite great variability in training methodology and outcome measures, the results were positive overall. However, only three rehabilitation programs showed a transfer effect to WM (near) and daily life with long-term maintenance. The results were more variable for protocols limited to the use of computerized n-back training tasks. Overall, the current evidence supports multi-task WM training rather than single-task-limited program. It also supports early and long duration training, with some therapist support. However, it is not possible, to date, to make strong recommendations regarding the rehabilitation program to be used preferentially. Although results are encouraging, level of evidence remains modest, particularly regarding the maintenance of the therapeutic effect after the end of training, and the transfer to everyday life skills. The influence of rehabilitation parameters (training duration, therapist involvement … ) remains difficult to assess.

4.
Neuroimage Clin ; 41: 103568, 2024.
Article En | MEDLINE | ID: mdl-38277807

INTRODUCTION: Neonatal arterial ischemic stroke (NAIS) is a common model to study the impact of a unilateral early brain insult on developmental brain plasticity and the appearance of long-term outcomes. Motor difficulties that may arise are typically related to poor function of the affected (contra-lesioned) hand, but surprisingly also of the ipsilesional hand. Although many longitudinal studies after NAIS have shown that predicting the occurrence of gross motor difficulties is easier, accurately predicting hand motor function (for both hands) from morphometric MRI remains complicated. The hypothesis of an association between the structural organization of the basal ganglia (BG) and thalamus with hand motor function seems intuitive given their key role in sensorimotor function. Neuroimaging studies have frequently investigated these structures to evaluate the correlation between their volumes and motor function following early brain injury. However, the results have been controversial. We hypothesize the involvement of other structural parameters. METHOD: The study involves 35 children (mean age 7.3 years, SD 0.4) with middle cerebral artery NAIS who underwent a structural T1-weighted 3D MRI and clinical examination to assess manual dexterity using the Box and Blocks Test (BBT). Graphs are used to represent high-level structural information of the BG and thalami (volumes, elongations, distances) measured from the MRI. A graph neural network (GNN) is proposed to predict children's hand motor function through a graph regression. To reduce the impact of external factors on motor function (such as behavior and cognition), we calculate a BBT score ratio for each child and hand. RESULTS: The results indicate a significant correlation between the score ratios predicted by our method and the actual score ratios of both hands (p < 0.05), together with a relatively high accuracy of prediction (mean L1 distance < 0.03). The structural information seems to have a different influence on each hand's motor function. The affected hand's motor function is more correlated with the volume, while the 'unaffected' hand function is more correlated with the elongation of the structures. Experiments emphasize the importance of considering the whole macrostructural organization of the basal ganglia and thalami networks, rather than the volume alone, to predict hand motor function. CONCLUSION: There is a significant correlation between the structural characteristics of the basal ganglia/thalami and motor function in both hands. These results support the use of MRI macrostructural features of the basal ganglia and thalamus as an early biomarker for predicting motor function in both hands after early brain injury.


Brain Injuries , Ischemic Stroke , Stroke , Child , Infant, Newborn , Humans , Brain , Magnetic Resonance Imaging/methods , Hand , Basal Ganglia/diagnostic imaging , Brain Injuries/complications , Thalamus/diagnostic imaging
5.
Magn Reson Med ; 91(4): 1723-1734, 2024 Apr.
Article En | MEDLINE | ID: mdl-38084471

PURPOSE: Testing an RF coil prototype on subjects involves laborious verifications to ensure its safety. In particular, it requires preliminary electromagnetic simulations and their validations on phantoms to accurately predict the specific absorption rate (SAR). For coil design validation with a simpler safety procedure, the restricted SAR (rS) mode is proposed, enabling representative first experiments in vivo. The goal of the developed approach is to accelerate the transition of a custom coil system from prototype to clinical use. METHODS: The restricted specific absorption rate (SAR) (rS) mode imposes a radical limitation on the transmitted RF power based on a worst-case scenario of local RF power absorption. The limitations used are independent of the SAR spatial distribution, making this approach unconditionally safe. The developed rS protocol contains the sequences required for coil evaluation and satisfies the imposed rS conditions. It provides a quantitative characterization of the coil transmission and reception profiles and a qualitative evaluation of the anatomical images. Protocol validation was performed on commercial and pre-industrial prototype coils on a small cohort of healthy volunteers. RESULTS: The proposed rS protocol enables coil evaluation within an acquisition time compatible with common clinical protocol duration. The total time of all evaluation steps does not exceed 17 min. At the same time, the global SAR remains 100 times less than the International Electrotechnical Commission safety limit for played sequences. CONCLUSION: The rS protocol allows characterizing and comparing coil prototypes on volunteers without extensive electromagnetic calculations and phantom validations in an unconditionally safe way.


Magnetic Resonance Imaging , Radio Waves , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging
6.
Front Neurosci ; 17: 1289013, 2023.
Article En | MEDLINE | ID: mdl-38027471

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic forms (NS-FASD). The neuroanatomical consequences of prenatal alcohol exposure are mainly the reduction in brain size, but also focal abnormalities such as those of the corpus callosum (CC). We previously showed a narrowing of the CC for brain size, using manual measurement and its usefulness to improve diagnostic certainty. Our aim was to automate these measurements of the CC and identify more recurrent abnormalities in FAS subjects, independently of brain size reduction. Methods: We developed a fast, automated, and normalization-free method based on spectral analysis to generate thicknesses of the CC continuously and at singular points (genu, body, isthmus, and splenium), and its length (LCC). We applied it on midsagittal section of the CC extracted from T1-anatomical brain MRI of 89 subjects with FASD (52 FAS, 37 NS-FASD) and 126 with typically development (6-20 y-o). After adjusting for batch effect, we compared the mean profiles and thicknesses of the singular points across the 3 groups. For each parameter, we established variations with age (growth charts) and brain size in the control group (scaling charts), then identified participants with abnormal measurements (<10th percentile). Results: We confirmed the slimming of the posterior half of the CC in both FASD groups, and of the genu section in the FAS group, compared to the control group. We found a significant group effect for the LCC, genu, median body, isthmus, and splenium thicknesses (p < 0.05). We described a body hump whose morphology did not differ between groups. According to the growth charts, there was an excess of FASD subjects with abnormal LCC and isthmus, and of FAS subjects with abnormal genu and splenium. According to the scaling charts, this excess remained only for LCC, isthmus and splenium, undersized for brain size. Conclusion: We characterized size-independent anomalies of the posterior part of the CC in FASD, with an automated method, confirming and extending our previous study. Our new tool brings the use of a neuroanatomical criterion including CC damage closer to clinical practice. Our results suggest that an FAS signature identified in NS-FASD, could improve diagnosis specificity.

7.
Clin Neuropsychol ; : 1-24, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37974061

Introduction: Fetal Alcohol Spectrum Disorders (FASD) are characterized by a variety of multiple cognitive and behavioral impairments, with intellectual, attentional, and executive impairments being the most commonly reported. In populations with multiple neurodevelopmental disorders, the Full Scale Intelligence Quotient (FSIQ) may not be a proper measure of intellectual abilities, rarely interpreted in FASD clinical practice because the heterogeneity of the cognitive profile is deemed too strong. We propose a quantitative characterization of this heterogeneity, of the strengths and weaknesses profile, and a differential analysis between global cognitive (FSIQ) and elementary reasoning abilities in a large retrospective monocentric FASD sample. Methods: Using clinical and cognitive data (Wechsler Intelligence Scale for Children) from 107 children with FASD, we characterized subject heterogeneity (variance and scatter of scaled/composite scores), searched for strengths and weaknesses, and specified intellectual functioning in terms of FSIQ and elementary reasoning (General Abilities Index, Highest Reasoning Scaled Score), in comparison with standardization norms and a Monte-Carlo-simulated sample from normalization data. Results: Performance of children with FASD was lower on all subtests, with a significant weakness in working memory and processing speed. We found no increase in the variance and scatter of the scores, but a discordance between the assessment of global cognitive functioning (28% borderline, 23% deficient) and that of global and elementary reasoning abilities (23-9% borderline, 15-14% deficient). Conclusion: Our results question the notion of WISC profile heterogeneity in FASD and point to working memory and processing speed over-impairment, with global repercussions but most often preserved elementary reasoning abilities.

8.
Front Neurosci ; 17: 1188367, 2023.
Article En | MEDLINE | ID: mdl-37360177

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic non-specific forms (NS-FASD) that are still underdiagnosed and could benefit from new neuroanatomical markers. The main neuroanatomical manifestation of prenatal alcohol exposure on developmental toxicity is the reduction in brain size, but repeated imaging observations have long driven the attention on the corpus callosum (CC), without being all convergent. Our study proposed a new segmentation of the CC that relies on both a sulci-based cortical segmentation and the "hemispherotopic" organization of the transcallosal fibers. Methods: We collected a monocentric series of 37 subjects with FAS, 28 with NS-FASD, and 38 with typical development (6 to 25 years old) using brain MRI (1.5T). Associating T1- and diffusion-weighted imaging, we projected a sulci-based cortical segmentation of the hemispheres on the midsagittal section of the CC, resulting in seven homologous anterior-posterior parcels (frontopolar, anterior and posterior prefrontal, precentral, postcentral, parietal, and occipital). We measured the effect of FASD on the area of callosal and cortical parcels by considering age, sex, and brain size as linear covariates. The surface proportion of the corresponding cortical parcel was introduced as an additional covariate. We performed a normative analysis to identify subjects with an abnormally small parcel. Results: All callosal and cortical parcels were smaller in the FASD group compared with controls. When accounting for age, sex, and brain size, only the postcentral (η2 = 6.5%, pFDR = 0.032) callosal parcel and % of the cortical parcel (η2 = 8.9%, pFDR = 0.007) were still smaller. Adding the surface proportion (%) of the corresponding cortical parcel to the model, only the occipital parcel was persistently reduced in the FASD group (η2 = 5.7%, pFDR = 0.014). In the normative analysis, we found an excess of subjects with FASD with abnormally small precentral and postcentral (peri-isthmic) and posterior-splenial parcels (pFDR < 0.05). Conclusion: The objective sulcal and connectivity-based method of CC parcellation proved to be useful not only in confirming posterior-splenial damage in FASD but also in the narrowing of the peri-isthmic region strongly associated with a specific size reduction in the corresponding postcentral cortical region (postcentral gyrus). The normative analysis showed that this type of callosal segmentation could provide a clinically relevant neuroanatomical endophenotype, even in NS-FASD.

9.
Hum Brain Mapp ; 44(11): 4321-4336, 2023 08 01.
Article En | MEDLINE | ID: mdl-37209313

In fetal alcohol spectrum disorders (FASD), brain growth deficiency is a hallmark of subjects both with fetal alcohol syndrome (FAS) and with non-syndromic FASD (NS-FASD, i.e., those without specific diagnostic features). However, although the cerebellum was suggested to be more severely undersized than the rest of the brain, it has not yet been given a specific place in the FASD diagnostic criteria where neuroanatomical features still count for little if anything in diagnostic specificity. We applied a combination of cerebellar segmentation tools on a 1.5 T 3DT1 brain MRI dataset from a monocentric population of 89 FASD (52 FAS, 37 NS-FASD) and 126 typically developing controls (6-20 years old), providing 8 volumes: cerebellum, vermis and 3 lobes (anterior, posterior, inferior), plus total brain volume. After adjustment of confounders, the allometric scaling relationship between these cerebellar volumes (Vi ) and the total brain or cerebellum volume (Vt ) was fitted (Vi = bVt a ), and the effect of group (FAS, control) on allometric scaling was evaluated. We then estimated for each cerebellar volume in the FAS population the deviation from the typical scaling (v DTS) learned in the controls. Lastly, we trained and tested two classifiers to discriminate FAS from controls, one based on the total cerebellum v DTS only, the other based on all the cerebellar v DTS, comparing their performance both in the FAS and the NS-FASD group. Allometric scaling was significantly different between FAS and control group for all the cerebellar volumes (p < .001). We confirmed the excess of total cerebellum volume deficit (v DTS = -10.6%) and revealed an antero-inferior-posterior gradient of volumetric undersizing in the hemispheres (-12.4%, 1.1%, 2.0%, respectively) and the vermis (-16.7%, -9.2%, -8.6%, repectively). The classifier based on the intracerebellar gradient of v DTS performed more efficiently than the one based on total cerebellum v DTS only (AUC = 92% vs. 82%, p = .001). Setting a high probability threshold for >95% specificity of the classifiers, the gradient-based classifier identified 35% of the NS-FASD to have a FAS cerebellar phenotype, compared to 11% with the cerebellum-only classifier (pFISHER = 0.027). In a large series of FASD, this study details the volumetric undersizing within the cerebellum at the lobar and vermian level using allometric scaling, revealing an anterior-inferior-posterior gradient of vulnerability to prenatal alcohol exposure. It also strongly suggests that this intracerebellar gradient of volumetric undersizing may be a reliable neuroanatomical signature of FAS that could be used to improve the specificity of the diagnosis of NS-FASD.


Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Fetal Alcohol Spectrum Disorders/diagnostic imaging , Brain/diagnostic imaging , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
10.
Dev Med Child Neurol ; 65(4): 551-562, 2023 04.
Article En | MEDLINE | ID: mdl-36137006

AIM: To identify easily accessible neuroanatomical abnormalities useful for diagnosing fetal alcohol spectrum disorders (FASD) in fetal alcohol syndrome (FAS) but more importantly for the probabilistic diagnosis of non-syndromic forms (NS-FASD). METHOD: We retrospectively collected monocentric data from 52 individuals with FAS, 37 with NS-FASD, and 94 paired typically developing individuals (6-20 years, 99 males, 84 females). On brain T1-weighted magnetic resonance imaging, we measured brain size, corpus callosum length and thicknesses, vermis height, then evaluated vermis foliation (Likert scale). For each parameter, we established variations with age and brain size in comparison individuals (growth and scaling charts), then identified participants with abnormal measurements (<10th centile). RESULTS: According to growth charts, there was an excess of FAS with abnormally small brain, isthmus, splenium, and vermis. According to scaling charts, this excess remained only for isthmus thickness and vermis height. The vermis foliation was pathological in 18% of those with FASD but in no comparison individual. Overall, 39% of those with FAS, 27% with NS-FASD, but only 2% of comparison individuals presented with two FAS-recurrent abnormalities, and 19% of those with FAS had all three. Considering the number of anomalies, there was a higher likelihood of a causal link with alcohol in 14% of those with NS-FASD. INTERPRETATION: Our results suggest that adding an explicit composite neuroanatomical-radiological criterion for FASD diagnosis may improve its specificity, especially in NS-FASD. WHAT THIS PAPER ADDS: Neuroanatomical anomalies independent of microcephaly can be measured with clinical-imaging tools. Small-for-age brain, small-for-brain-size callosal isthmus or vermian height, and disrupted vermis foliation are fetal alcohol syndrome (FAS)-recurrent anomalies. Associations of these anomalies are frequent in fetal alcohol spectrum disorder (FASD) even without FAS, while exceptional in typically developing individuals. These associations support higher likelihood of causal link with alcohol in some individuals with non-syndromic FASD. A new explicit and composite neuroanatomical-radiological criterion can improve the specificity of FASD diagnosis.


Fetal Alcohol Spectrum Disorders , Female , Male , Pregnancy , Humans , Retrospective Studies , Brain , Corpus Callosum , Ethanol
11.
Front Neurosci ; 16: 932386, 2022.
Article En | MEDLINE | ID: mdl-36507362

Consisting of distributed and interconnected structures that interact through cortico-cortical connections and cortico-subcortical loops, the sensorimotor (SM) network undergoes rapid maturation during the perinatal period and is thus particularly vulnerable to preterm birth. However, the impact of prematurity on the development and integrity of the emerging SM connections and their relationship to later motor and global impairments are still poorly understood. In this study we aimed to explore to which extent the early microstructural maturation of SM white matter (WM) connections at term-equivalent age (TEA) is modulated by prematurity and related with neurodevelopmental outcome at 18 months corrected age. We analyzed 118 diffusion MRI datasets from the developing Human Connectome Project (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a control group of full-term (FT) neonates paired for age at MRI and sex. We delineated WM connections between the primary SM cortices (S1, M1 and paracentral region) and subcortical structures using probabilistic tractography, and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. To go beyond tract-specific univariate analyses, we computed a maturational distance related to prematurity based on the multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Our results confirmed the presence of microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Maturational distance analyses highlighted that prematurity has a differential effect on SM tracts with higher distances and thus impact on (i) cortico-cortical than cortico-subcortical connections; (ii) projections involving S1 than M1 and paracentral region; and (iii) the most rostral cortico-subcortical tracts, involving the lenticular nucleus. These different alterations at TEA suggested that vulnerability follows a specific pattern coherent with the established WM caudo-rostral progression of maturation. Finally, we highlighted some relationships between NODDI-derived maturational distances of specific tracts and fine motor and cognitive outcomes at 18 months. As a whole, our results expand understanding of the significant impact of premature birth and early alterations on the emerging SM network even in low-risk infants, with possible relationship with neurodevelopmental outcomes. This encourages further exploration of these potential neuroimaging markers for prediction of neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.

12.
Neuroimage Clin ; 34: 103035, 2022.
Article En | MEDLINE | ID: mdl-35561553

INTRODUCTION: Neonatal arterial ischemic stroke (NAIS) has been shown to affect white matter (WM) microstructure beyond the lesion. Here, we employed fixel-based analysis, a technique which allows to model and interpret WM alterations in complex arrangements such as crossing fibers, to further characterize the long-term effects of NAIS on the entire WM outside the primary infarct area. MATERIALS AND METHODS: 32 children (mean age 7.3 years (SD 0.4), 19 male) with middle cerebral artery NAIS (18 left hemisphere, 14 right hemisphere) and 31 healthy controls (mean age 7.7 years (SD 0.6), 16 male) underwent diffusion MRI scans and clinical examination for manual dexterity. Microstructural and macrostructural properties of the WM were investigated in a fixel-based whole-brain analysis, which allows to detect fiber-specific effects. Additionally, tract-averaged fixel metrics in interhemispheric tracts, and their correlation with manual dexterity, were examined. RESULTS: Significantly reduced microstructural properties were identified, located within the parietal and temporal WM of the affected hemisphere, as well as within their interhemispheric connecting tracts. Tract-averaged fixel metrics showed moderate, significant correlation with manual dexterity of the affected hand. No increased fixel metrics or contralesional alterations were observed. DISCUSSION: Our results show that NAIS leads to long-term alterations in WM microstructure distant from the lesion site, both within the parietal and temporal lobes as well as in their interhemispheric connections. The functional significance of these findings is demonstrated by the correlations with manual dexterity. The localization of alterations in structures highly connected to the lesioned areas shift our perception of NAIS from a focal towards a developmental network injury.


Infant, Newborn, Diseases , Stroke , White Matter , Brain , Child , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Humans , Infant, Newborn , Infant, Newborn, Diseases/pathology , Male , White Matter/pathology
13.
Children (Basel) ; 9(4)2022 Apr 14.
Article En | MEDLINE | ID: mdl-35455605

BACKGROUND: Brain magnetic resonance imaging (MRI) is a key tool for the prognostication of encephalic newborns in the context of hypoxic-ischemic events. The purpose of this study was to finely characterize brain injuries in this context. METHODS: We provided a complete, descriptive analysis of the brain MRIs of infants included in the French national, multicentric cohort LyTONEPAL. RESULTS: Among 794 eligible infants, 520 (65.5%) with MRI before 12 days of life, grade II or III encephalopathy and gestational age ≥36 weeks were included. Half of the population had a brain injury (52.4%); MRIs were acquired before 6 days of life among 247 (47.5%) newborns. The basal ganglia (BGT), white matter (WM) and cortex were the three predominant sites of injuries, affecting 33.8% (n = 171), 33.5% (n = 166) and 25.6% (n = 128) of participants, respectively. The thalamus and the periventricular WM were the predominant sublocations. The BGT, posterior limb internal capsule, brainstem and cortical injuries appeared more frequently in the early MRI group than in the late MRI group. CONCLUSION: This study described an overview of brain injuries in hypoxic-ischemic neonatal encephalopathy. The basal ganglia with the thalamus and the WM with periventricular sublocation injuries were predominant. Comprehensive identification of brain injuries in the context of HIE may provide insight into the mechanism and time of occurrence.

14.
Magn Reson Imaging ; 90: 37-43, 2022 07.
Article En | MEDLINE | ID: mdl-35413425

PURPOSE: The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan. METHOD: We produce a set of two 10x10x1cm3 dielectric pads based on silicon carbide (SiC) powder dispersed in 4-Fluoro 1, 3-dioxalan-2-one (FEC) and polyethylene Glycol (PEG). The stability of the complex permittivity and the invisibility of the pads are characterized experimentally. Numerical simulations are done to evaluate global and local SAR over the head in presence of the pads. B0, B1+ and standard imaging sequences are performed on healthy volunteers. RESULTS: SiC pads are compared to state-of-the-art perovskite based dielectric pads with similar dielectric properties (barium titanate). Numerical simulations confirm that head and local SAR are similar. MRI measurements confirm that the pads do not induce susceptibility artefacts and improve B1+ amplitude in the temporal lobe regions by 25% on average. CONCLUSION: We demonstrate the long-term performance and invisibility of these new pads in order to increase the contrast in the brain temporal lobes in a commercial 7 T MRI head coil.


Artifacts , Magnetic Resonance Imaging , Brain/diagnostic imaging , Carbon Compounds, Inorganic , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves , Silicon Compounds
15.
Eur Radiol Exp ; 6(1): 12, 2022 03 03.
Article En | MEDLINE | ID: mdl-35237875

BACKGROUND: Magnetic resonance imaging (MRI) is currently considered a safe imaging technique because, unlike computed tomography, MRI does not expose patients to ionising radiation. However, conflicting literature reports possible genotoxic effects of MRI. We herein examine the chromosomal effects of repeated MRI scans by performing a longitudinal follow-up of chromosomal integrity in volunteers. METHODS: This ethically approved study was performed on 13 healthy volunteers (mean age 33 years) exposed to up to 26 3-T MRI sessions. The characterisation of chromosome damage in peripheral blood lymphocytes was performed using the gold-standard biodosimetry technique augmented with telomere and centromere staining. RESULTS: Cytogenetic analysis showed no detectable effect after a single MRI scan. However, repeated MRI sessions (from 10 to 20 scans) were associated with a small but significant increase in chromosomal breaks with the accumulation of cells with chromosomal terminal deletions with a coefficient of 9.5% (95% confidence interval 6.5-12.5%) per MRI (p < 0.001). Additional exposure did not result in any further increase. This plateauing of damage suggests lymphocyte turnover. Additionally, there was no significant induction of dicentric chromosomes, in contrast to what is observed following exposure to ionising radiation. CONCLUSIONS: Our study showed that MRI can affect chromosomal integrity. However, the amount of damage per cell might be so low that no chromosomal rearrangement by fusion of two deoxyribonucleic breaks is induced, unlike that seen after exposure to computed tomography. This study confirms that MRI is a safe imaging technique.


Brain , Magnetic Resonance Imaging , Adult , Chromosomes , Healthy Volunteers , Humans , Tomography, X-Ray Computed
16.
Cereb Cortex Commun ; 3(1): tgac004, 2022.
Article En | MEDLINE | ID: mdl-35261977

The structure-function relationship between white matter microstructure and episodic memory (EM) has been poorly studied in the developing brain, particularly in early childhood. Previous studies in adolescents and adults have shown that episodic memory recall is associated with prefrontal-limbic white matter microstructure. It is unknown whether this association is also observed during early ontogeny. Here, we investigated the association between prefrontal-limbic tract microstructure and EM performance in a cross-sectional sample of children aged 4 to 12 years. We used a multivariate partial least squares correlation approach to extract tract-specific latent variables representing shared information between age and diffusion parameters describing tract microstructure. Individual projections onto these latent variables describe patterns of interindividual differences in tract maturation that can be interpreted as scores of white matter tract microstructural maturity. Using these estimates of microstructural maturity, we showed that maturity scores of the uncinate fasciculus and dorsal cingulum bundle correlated with distinct measures of EM recall. Furthermore, the association between tract maturity scores and EM recall was comparable between younger and older children. Our results provide new evidence on the relation between white matter maturity and EM performance during development.

17.
Children (Basel) ; 9(3)2022 Mar 04.
Article En | MEDLINE | ID: mdl-35327728

Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water's motion into the brain, allows a representation of this maturation process. Similarly, the brain's connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.

18.
Pediatr Res ; 92(3): 880-887, 2022 09.
Article En | MEDLINE | ID: mdl-34802036

BACKGROUND: Hypothermia is widely used for infants with hypoxic-ischemic neonatal encephalopathy but its impact remains poorly described at a population level. We aimed to describe brain imaging in infants born at ≥36 weeks' gestation, with moderate/severe encephalopathy treated with hypothermia. METHODS: Descriptive analysis of brain MRI and discharge neurological examination for infants included in the French national multicentric prospective observational cohort LyTONEPAL. RESULTS: Among 575 eligible infants, 479 (83.3%) with MRI before 12 days of life were included. MRI was normal for 48.2% (95% CI 43.7-52.8). Among infants with brain injuries, 62.5% (95% CI 56.2-68.5) had damage to more than one structure, 19.8% (95% CI 15.0-25.3) showed a pattern-associating injuries of basal ganglia/thalami (BGT), white matter (WM) and cortex. Overall, 68.4% (95% CI 62.0-74.3) of infants with normal MRI survived with a normal neurological examination. The rate of death was 15.4% (95% CI 12.3-19.0), predominantly for infants with the combined BGT, cortex, and/or WM injuries. CONCLUSIONS: Among infants with neonatal encephalopathy treated with hypothermia, two-thirds of those with normal MRI survived with a normal neurological examination at discharge. When present, brain injuries often involved more than one structure. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov (NCT02676063). IMPACT: In this multicentric cohort of infants with neonatal encephalopathy (LYTONEPAL) two-thirds survived with normal MRI and neurological examination at discharge. In total, 10% of newborns showed a pattern associating injuries of the basal ganglia-thalami, white matter, and cortex, which was correlated with a high risk of death at discharge. The evolution of MRI techniques and sequences in the era of hypothermia calls for a revisiting of imaging protocol in neonatal encephalopathy, especially for the timing. The neurological examination did not give evidence of brain injuries, thus questioning the reproducibility of the clinical exam or the neonatal brain functionality.


Brain Injuries, Traumatic , Brain Injuries , Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn, Diseases , Brain Injuries/therapy , Brain Injuries, Traumatic/therapy , Humans , Hypothermia/therapy , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Infant, Newborn, Diseases/diagnosis , Magnetic Resonance Imaging/methods , Reproducibility of Results
19.
Ann Clin Transl Neurol ; 8(5): 1024-1037, 2021 05.
Article En | MEDLINE | ID: mdl-33787079

OBJECTIVE: Studies of motor outcome after Neonatal Arterial Ischemic Stroke (NAIS) often rely on lesion mapping using MRI. However, clinical measurements indicate that motor deficit can be different than what would solely be anticipated by the lesion extent and location. Because this may be explained by the cortical disconnections between motor areas due to necrosis following the stroke, the investigation of the motor network can help in the understanding of visual inspection and outcome discrepancy. In this study, we propose to examine the structural connectivity between motor areas in NAIS patients compared to healthy controls in order to define the cortical and subcortical connections that can reflect the motor outcome. METHODS: Thirty healthy controls and 32 NAIS patients with and without Cerebral Palsy (CP) underwent MRI acquisition and manual assessment. The connectome of all participants was obtained from T1-weighted and diffusion-weighted imaging. RESULTS: Significant disconnections in the lesioned and contra-lesioned hemispheres of patients were found. Furthermore, significant correlations were detected between the structural connectivity metric of specific motor areas and manuality assessed by the Box and Block Test (BBT) scores in patients. INTERPRETATION: Using the connectivity measures of these links, the BBT score can be estimated using a multiple linear regression model. In addition, the presence or not of CP can also be predicted using the KNN classification algorithm. According to our results, the structural connectome can be an asset in the estimation of gross manual dexterity and can help uncover structural changes between brain regions related to NAIS.


Cerebral Arterial Diseases/pathology , Cerebral Palsy/pathology , Infant, Newborn, Diseases/pathology , Ischemic Stroke/pathology , Nerve Net/pathology , Cerebral Arterial Diseases/diagnostic imaging , Cerebral Palsy/diagnostic imaging , Child , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Female , Follow-Up Studies , Humans , Infant, Newborn , Ischemic Stroke/diagnostic imaging , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging
20.
Cortex ; 137: 160-178, 2021 04.
Article En | MEDLINE | ID: mdl-33618156

Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information is still under debate. Previous findings suggested that dyslexic participants showed atypical neural entrainment to slow and/or fast temporal modulations in speech, which might affect prosodic/syllabic and phonemic processing respectively. However, the large methodological variations across these studies do not allow us to draw clear conclusions on the nature of the entrainment deficit in dyslexia. Using magnetoencephalography, we measured neural entrainment to nonspeech and speech in both groups. We first aimed to conceptually replicate previous studies on auditory entrainment in dyslexia, using the same measurement methods as in previous studies, and also using new measurement methods (cross-correlation analyses) to better characterize the synchronization between stimulus and brain response. We failed to observe any of the significant group differences that had previously been reported in delta, theta and gamma frequency bands, whether using speech or nonspeech stimuli. However, when analyzing amplitude cross-correlations between noise stimuli and brain responses, we found that control participants showed larger responses than dyslexic participants in the delta range in the right hemisphere and in the gamma range in the left hemisphere. Overall, our results are weakly consistent with the hypothesis that dyslexic individuals show an atypical entrainment to temporal modulations. Our attempt at replicating previously published results highlights the multiple weaknesses of this research area, particularly low statistical power due to small sample size, and the lack of methodological standards inducing considerable heterogeneity of measurement and analysis methods across studies.


Dyslexia , Speech Perception , Acoustic Stimulation , Brain , Humans , Magnetoencephalography , Speech
...