Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Chem Biodivers ; 20(5): e202201160, 2023 May.
Article En | MEDLINE | ID: mdl-37026601

Artemisia turcomanic as a natural antibacterial agent, exhibited significant antibacterial effect in the treatment against cancer. This study is the first to investigate size, encapsulation efficiencies, release behavior of Artemisia turcomanic loaded niosomal nanocarriers, and the anticancer effect of niosomal nanocarriers by MTT assay, flow cytometry, and real time (on HeLa cell lines). When the molar ratio of cholesterol: surfactant was 1 : 2 and the liquid content was 300 µmol, the highest percentage of entrapment efficiency was 83.25 %. Moreover, niosomal formulation showed a pH-dependent release; a slow-release profile in physiological pH (7.4), and a more significant release rate at acidic conditions (pH=5.4). In addition, The apoptotic rate of Artemisia loaded niosomes on HeLa cell lines was higher than free extract and pristine niosome. Also, reduction in the expression levels of Bcl2, caspase-3, and p53 genes and increase in the expression level of BAX after treatment with Artemisia turcomanic-loaded niosomes were more significant than those after treatment with free Artemisia turcomanic and blank niosome. The cytotoxicity results of samples presented that Artemisia turcomanic loaded niosomes are more beneficial in the death of HeLa cell lines.


Anti-Bacterial Agents , Liposomes , Humans , Liposomes/chemistry , HeLa Cells
2.
Rep Biochem Mol Biol ; 12(2): 350-358, 2023 Jul.
Article En | MEDLINE | ID: mdl-38317807

Background: Persistent liver damage contributes to the development of liver fibrosis, marked by an accumulation of extracellular matrix. Macrophages play a pivotal role in this process, with the CCL2-CCR2 and CX3CR1-CX3CL1 axes serving as key regulators of macrophage recruitment, liver infiltration, and differentiation. In this study, utilizing a rat model of carbon tetrachloride (CCL4)-induced liver fibrosis, we aimed to investigate the impact of imatinib and bone marrow-derived mesenchymal stem cells (BM-MSCs) on the expression of these axis. Methods: Sixteen Sprague-Dawley rats were divided into four groups: healthy, liver fibrosis, imatinib-recipient, and BM-MSC-recipient. Treatment effects were evaluated using histopathology and Sirus-red staining. Quantitative real-time PCR was employed to analyze changes in the expression of the genes CCL2, CCR2, CX3CL1, and CX3CR1. Results: Histopathological assessments revealed the efficacy of imatinib and BM-MSCs in mitigating liver fibrosis. Our findings demonstrated a significant reduction in CCL2 and CCR2 expression in both imatinib and BM-MSCs treatment groups compared to the liver fibrosis group. Conversely, the gene expression of CX3CL1 and CX3CR1 increased in both therapeutic groups compared to the liver fibrosis groups. Conclusions: The notable decrease in CCL2-CCR2 genes in both therapeutic groups suggests that BM-MSCs and imatinib may contribute to a decline in inflammatory macrophages within the liver. The lower CCL2-CCR2 expression in imatinib-recipient rats indicates better efficacy in modulating the recruitment of inflammatory macrophages. The elevated expression of CX3CL1 in BM-MSC-recipient rats suggests a greater impact on the polarization of LY6Chigh (inflammatory) to LY6Clow (anti-inflammatory) macrophages, warranting further investigation.

3.
J Family Reprod Health ; 17(4): 205-215, 2023 Dec.
Article En | MEDLINE | ID: mdl-38807627

Objective: Dual oxidases (DUOX1, DUOX2) belong to the NADPH oxidase (NOX) family, which produce H2O2 necessary for thyroid hormone biosynthesis. This study aims to evaluate gene expression for DUOX1, DUOX2 in PCOS patients and its relation with thyroid hormone and magnesium levels. Materials and methods: Totally 88 cases were studied including 24 people with PCOS and hypothyroidism, 44 people with PCOS and normal thyroid function, and 20 hypothyroid patients without PCOS. In comparison 40 healthy controls in the age group of 16-35 years matched for age group and BMI were evaluated. Using Vegaro syringe 5 cc of blood was sampled from all 128 people and after RNA extraction and cDNA synthesis using Real-Time PCR technique, the expression level of DUOX1 and DUOX2 genes was investigated. Results: The results of hormonal tests showed that there is a significant difference between the level of T4, T3, and TSH hormones in hypothyroid patients with or without PCOS in comparison to the control group. Regarding the level of Mg, the results showed that there is a significant difference between the levels of Mg in PCOS group with or without hypothyroidism in comparison to the control group. Gene expression results showed that the relative changes of DUOX1 gene expression in different groups compared to the control group were significantly reduced P<0.05. In the polycystic group with hypothyroidism, the gene expression level showed a decrease compared to the normo-thyroid polycystic group and the hypothyroid non-PCO group, which was statistically significant P<0.05. Conclusion: According to the results of the present study and the previous studies that have been published in the field of Duox1, it can be assumed that the reduction of Duox1 expression can interfere with the oxidative stress system. Further studies with other molecular techniques may help to understand the exact action mechanism of these genes.

4.
Int J Dent ; 2021: 3034068, 2021.
Article En | MEDLINE | ID: mdl-34621315

BACKGROUND: The oral environment has a very complex normal flora and a wide variety of bacteria including lactobacilli. Studies have shown oral microbial flora has important influence in the development of oral cancer. Squamous cell carcinomas account for more than 90% of cancers in oral cavity. Lactobacilli are known as one of the newest methods for the prevention and treatment of cancers. Previous studies on the effects of probiotics on oral cancer cells are very limited, and only two species of Lactobacillus which are not present in the normal oral microflora have been studied. Due to the unknown effects of lactobacilli on oral cancer, this study aimed to investigate the effect of two species of lactobacilli of oral cavity on oral cancer cells. METHODS AND MATERIALS: The effects of the supernatant of two lactobacilli, namely, fermentum and crispatus were studied on HN5-cancer cells. The MTT method was used to study the effects of lactobacilli on inhibition of cancer cell growth. RESULTS: The results showed that these lactobacilli do not prevent the progression of oral cancer cells. Moreover, the results showed that the acidic medium had the most effect on reducing the growth of oral cancer cells. CONCLUSION: Due to the different effects of lactobacilli on various cancer types, the effects of two Lactobacillus crispatus and Lactobacillus fermentum on other oral cancer cell lines may be different from what has been reported in this study.

5.
Mol Biol Rep ; 45(6): 2053-2061, 2018 Dec.
Article En | MEDLINE | ID: mdl-30196454

Phytases are enzymes that hydrolysis phytic acid and makes mineral phosphorus available to animals. Phytases face relatively extreme heating during food processing, thus thermostability plays an important role in industrial applicability of this enzyme. Herein, we report the design of a thermostable phytase with favorable biochemical properties and high enzymatic activity using molecular dynamics and rational design-based molecular engineering. Based on the crystal structure of E. coli phytase, bioinformatics analysis and docking binding energy measurement, S392F mutant was introduced by site-directed mutagenesis in order to improve thermostability of phytase through strengthen the bounding interactions. Wilde type and Mutated constructs were expressed in E. coli BL 21. The WT and manipulated phytase were purified; their biochemical and kinetic was investigated. Results revealed that recombinant WT and mutant phytase have optimum temperature of 50 °C with no significance change but optimum pH of WT and mutant was respectively 5 and 6 with a pH shift. Furthermore, S392F phytase catalytic efficiency values showed significant improve of 25.6%, compared with the WT. Analysis of the retained enzymatic activity at high temperatures, indicated that despite of phytase stability reduction at high temperatures but mutant phytase showed more stable behavior in compare with WT phytase, So that at 70 °C showed twice thermo stability and at 80 °C and 90 °C display respectively 74% and 78.4% improvement of thermostability compared to the wild-type. In conclusion, our results implied that the designed phytase could be a potential candidate for phytase manipulation research and industrial applications with improved thermostability.


6-Phytase/genetics , Mutagenesis, Site-Directed/methods , Protein Engineering/methods , 6-Phytase/metabolism , Enzyme Stability , Escherichia coli/genetics , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Temperature
6.
J Cell Biochem ; 119(11): 9433-9443, 2018 11.
Article En | MEDLINE | ID: mdl-30074271

Exosomes derived from adipose tissue-derived mesenchymal stem cells (AD-MSCs) have immunomodulatory effects of T-cell inflammatory response and reduction of clinical symptoms on streptozotocin-induced of the type-1 diabetes mellitus (T1DM). Beside control group and untreated T1DM mice, a group of T1DM mice was treated with intraperitoneal injections of characterized exosomes derived from autologous AD-MSCs. Body weight and blood glucose levels were measured during the procedure. Histopathology and immunohistochemistry were used for evaluation of pancreatic islets using hemotoxylin and eosin (H&E) staining and anti-insulin antibody. Isolated splenic mononuclear cells (MNCs) were subjected to splenocytes proliferation assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, immunophenotyping of regulatory T cells and cytokines. A significant increase in the levels of interleukin-4 (IL-4), IL-10, and transforming growth factor-ß, and a decrease in the levels of IL-17 and interferon-γ in concordance with the significant increase in the Treg cell ratio in splenic MNCs (P < 0.05) was shown in T1DM mice treated with AD-MSC's exosomes as compared to T1DM untreated mice. This amelioration of autoimmune reaction after treatment of T1DM mice with the AD-MSC exosomes was confirmed with a significant increase in islets using H&E staining and Immunohistochemistry analyses. As expected, body weight, blood glucose levels in a survival of T1DM mice treated with AD-MSC's exosomes were maintained stable in comparison to untreated T1DM mice. It can be concluded that AD-MSC's exosomes exert ameliorative effects on autoimmune T1DM through increasing regulatory T-cell population and their products without a change in the proliferation index of lymphocytes, which makes them more effective and practical candidates.


Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Exosomes/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cell Proliferation/drug effects , Immunohistochemistry , Islets of Langerhans/cytology , Leukocytes, Mononuclear/drug effects , Male , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Streptozocin/pharmacology , T-Lymphocytes, Regulatory/drug effects
7.
Mol Biol Rep ; 45(5): 1197-1208, 2018 Oct.
Article En | MEDLINE | ID: mdl-30032381

Cellulases like endoglucanase II (EGII) from Trichoderma reesei are the industrial enzymes responsible for breakdown of cellulosic materials. Due to its importance for production of eco-friendly commercial products such as alternative biofuels, industrial EGII production and optimization of its production conditions merit consideration. The gene responsible for EGII expression was designed and sub-cloned in to pET26b expression vector and transformed into BL21 (DE3) pLysS cells. Protein expression and purification was followed by a RSM design (20 experiments) to optimize the IPTG Concentration, post induction period and cell density (OD600). Thereafter, another RSM design (20 experiments) was performed to find and optimize the most important permeabilizing factors to achieve higher extracellular EGII expression. The EGII expression levels were assessed by Ghose method. The EGII gene was sub-cloned and protein expression and purification were successfully performed. The RSM experiments indicated that 0.331 mM for IPTG Concentration, 10.89 H for post induction period and 3.41 for cell density (OD600) were the optimum culture. Glycine (0.99%), Triton X-100 (0.73%) and CaCl2 (0.232) have been assigned as the most effective membrane permeabalizing factors. Optimization of culture medium components has led to a 3.06 fold increase in extracellular expression of EGII. RSM is an amenable method to optimize the expression of commercially significant enzymes. Our results indicated that optimization of IPTG concentration, post induction period and cell density along with glycine, Triton X-100 and Ca2+ concentration could lead to more cost effective industrial production of EGII.


Cellulase/genetics , Cellulase/metabolism , Culture Media/chemistry , Escherichia coli/growth & development , Trichoderma/enzymology , Bacteriological Techniques , Calcium/chemistry , Chromatography, Ion Exchange , Cloning, Molecular , Escherichia coli/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycine/chemistry , Isopropyl Thiogalactoside/chemistry , Octoxynol/chemistry , Protein Engineering , Trichoderma/genetics
8.
3 Biotech ; 6(2): 129, 2016 Dec.
Article En | MEDLINE | ID: mdl-28330196

Invertase (EC.3.2.1.26) catalyzes the hydrolysis of sucrose to an equimolar mixture of D-glucose and D-fructose which is of interest for various industrial applications. In this research, Saccharomyces cerevisiae invertase gene (SUC2) was optimized based on Pichia pastoris codon preference. The synthetic gene was introduced into the methylotrophic yeast Pichia pastoris under the control of the inducible AOX1 promoter. High level of the extracellular recombinant invertase (R-inv) production was achieved via methanol induction for 4 days and purified by His-Tag affinity chromatography which appeared to be a mixture of glycosylated proteins with various sizes of 85-95 kDa on SDS-PAGE. Deglycosylation of the proteins by Endo-H resulted in the proteins with average molecular weight of 60 kDa. The purified recombinant invertase biochemical properties and kinetic parameters determined a pH and temperature optimum at 4.8 and 60 °C, respectively, which in comparison with native S. cerevisiae invertase, thermal stability of recombinant invertase is highly increased in different heating treatment experiments. The purification of recombinant invertase resulted in an enzyme with specific activity of 178.56 U/mg with 3.83-fold of purification and the kinetic constants for enzyme were Km value of 19 mM and Vmax value of 300 µmol min-1 mg-1 With kinetic efficiency (Kcat/Km) of 13.15 s-1 mmol-1 it can be concluded that recombinant P. pastoris invertase can be more effective for industrial quality criteria. We conclude that recombinant P. pastoris enzyme with broad pH stability, substrate specificity and proper thermal stability can fulfil a series of predefined industrial quality criteria to be used in food, pharmaceutical and bio ethanol production industries.

9.
Appl Biochem Biotechnol ; 175(5): 2528-41, 2015 Mar.
Article En | MEDLINE | ID: mdl-25527139

Phytase efficiently catalyzes the hydrolysis of phytate to phosphate; it can be utilized as an animal supplement to provide animals their nutrient requirements for phosphate and to mitigate environmental pollution caused by unutilized feed phosphate. Owing to animal feed being commonly pelleted at 70 to 90 °C, phytase with a sufficiently high thermal stability is desirable. Based on the crystal structure of PhyA and bioinformatics analysis at variant heat treatments, 12 single and multiple mutants were introduced by site-directed mutagenesis in order to improve phytase thermostability. Mutated constructs were expressed in Pichia pastoris. The manipulated phytases were purified; their biochemical and kinetic investigation revealed that while the thermostability of six mutants was improved, P9 (T314S Q315R V62N) and P12 (S205N S206A T151A T314S Q315R) showed the highest heat stability (P < 0.05) with 24 and 22.6 % greater retention, respectively, compared with the PhyA of the wild type at 80 °C. The K m value of the improved thermostable P9 and P12 mutant enzymes for sodium phytate were 35 and 20 % lower (P < 0.05) with respect to the wild-type enzyme. In conclusion, it is feasible to simultaneously improve the thermostability and the catalytic efficiency of phytase to be used as an animal feed supplement.


6-Phytase/chemistry , 6-Phytase/genetics , Aspergillus niger/enzymology , Fungal Proteins/chemistry , Fungal Proteins/genetics , 6-Phytase/metabolism , Aspergillus niger/chemistry , Aspergillus niger/genetics , Enzyme Stability , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Phytic Acid/metabolism , Pichia/genetics , Pichia/metabolism , Temperature
...