Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 116(5): 1671-1678, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37671504

RESUMEN

Coconut free fatty acid (CFFA), a mixture of 8 fatty acids derived from coconut oil, is an effective repellent and deterrent against a broad array of hematophagous insects. In this study, we evaluated the oviposition deterrent activity of CFFA on spotted-wing drosophila (SWD; Drosophila suzukii), a destructive invasive pest of berries and cherries, and identified bioactive key-deterrent compounds. In laboratory 2-choice tests, CFFA deterred SWD oviposition in a dose-dependent manner with the greatest reduction (99%) observed at a 20-mg dose compared with solvent control. In a field test, raspberries treated with 20-mg CFFA received 64% fewer SWD eggs than raspberries treated with the solvent control. In subsequent laboratory bioassays, 2 of CFFA components, caprylic and capric acids, significantly reduced SWD oviposition by themselves, while 6 other components had no effect. In choice and no-choice assays, we found that a blend of caprylic acid and capric acid, at equivalent concentrations and ratio as in CFFA, was as effective as CFFA, while caprylic acid or capric acid individually were not as effective as the 2-component blend or CFFA at equivalent concentrations, indicating the 2 compounds as the key oviposition deterrent components for SWD. The blend was also as effective as CFFA for other nontarget drosophilid species in the field. Given that CFFA compounds are generally regarded as safe for humans, CFFA and its bioactive components have potential application in sustainably reducing SWD damage in commercial fruit operations, thereby reducing the sole reliance on insecticides.


Asunto(s)
Caprilatos , Drosophila , Femenino , Humanos , Animales , Caprilatos/farmacología , Aceite de Coco/farmacología , Oviposición , Frutas , Ácidos Grasos , Solventes/farmacología , Control de Insectos
2.
Pest Manag Sci ; 78(3): 1272-1278, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34859943

RESUMEN

BACKGROUND: Cultivation of grapes is a major crop globally, particularly in support of the wine production industry which has significant economic impact in numerous countries. Sour rot is an economically important disease of grapes. It is caused by an interaction of yeast + acetic acid bacteria, and vectored by Drosophila spp. Substantial control of sour rot in wine grape vineyards has been achieved by control of Drosophila using insecticides such as zeta-cypermethrin. An outbreak of sour rot and high populations of Drosophila melanogaster were observed in 2018 in a vineyard in New York (Finger Lakes region), USA. Flies from this population were found to be resistant to zeta-cypermethrin (the active ingredient in Mustang Maxx®), but whether or not this was a widespread problem was not known. To determine if resistance was geographically limited, we surveyed populations of D. melanogaster collected from 11 vineyards across New York State and one in Missouri (USA). We also evaluated 19 alternative insecticides for their potential use for control of D. melanogaster, by determining their toxicity to a susceptible strain and by examining cross-resistance using a field-collected population. RESULTS: There were high levels of resistance to zeta-cypermethrin, malathion, and acetamiprid found in all populations sampled. Resistance to zeta-cypermethrin and malathion was stable over 33 months. Results from two vineyards also suggested that resistance to spinetoram was starting to evolve. The alternative insecticides we evaluated had LC50 values to the susceptible strain ranging from 0.65 to 15 000 ng·cm-2 . CONCLUSION: Resistance to zeta-cypermethrin, malathion, and acetamiprid is geographically widespread and the levels of resistance are similar between early season and late season collections. Cross-resistance was detected against all the insecticides tested, with the lowest levels seen for broflanilide, fipronil, and flumethrin. These patterns of resistance/cross-resistance/multiple resistance are discussed in terms of selection within and outside of vineyards. The implications of these results to insecticide resistance monitoring and management are discussed.


Asunto(s)
Insecticidas , Piretrinas , Animales , Drosophila melanogaster , Granjas , Caballos , Resistencia a los Insecticidas , Insecticidas/farmacología , Malatión , Piretrinas/farmacología
3.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34599814

RESUMEN

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


Asunto(s)
Drosophila , Metagenómica , Animales , Drosophila/genética , Frutas , Marcadores Genéticos , Genómica , Estados Unidos
4.
ACS Omega ; 6(17): 11367-11374, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34056292

RESUMEN

Protein kinase R (PKR) is a key pattern recognition receptor of the innate immune pathway. PKR is activated by double-stranded RNA (dsRNA) that is often produced during viral genome replication and transcription. PKR contains two tandem double-stranded RNA binding domains at the N-terminus, dsRBD1 and dsRBD2, and a C-terminal kinase domain. In the canonical model for activation, RNAs that bind multiple PKRs induce dimerization of the kinase domain that promotes an active conformation. However, there is evidence that dimerization of the kinase domain is not sufficient to mediate activation and PKR activation is modulated by the RNA-binding mode. dsRBD2 lacks most of the consensus RNA-binding residues, and it has been suggested to function as a modulator of PKR activation. Here, we demonstrate that dsRBD2 regulates PKR activation and identify the N-terminal helix as a critical region for modulating kinase activity. Mutations in dsRBD2 that have minor effects on overall dsRNA-binding affinity strongly inhibit the activation of PKR by dsRNA. These mutations also inhibit RNA-independent PKR activation. These data support a model where dsRBD2 has evolved to function as a regulator of the kinase.

5.
J Econ Entomol ; 114(4): 1638-1646, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34021580

RESUMEN

The invasive spotted-wing drosophila, Drosophila suzukii (Matsumura), is a key insect pest of berries globally, causing lost revenues and increased production costs associated with applications of insecticides. The insecticides utilized are commonly broad-spectrum pyrethroids, organophosphates, or carbamates in conventionally managed fields and spinosad in organically managed fields. Adoption of more selective insecticides has been limited due to their lower residual activity, and the requirement that some must be ingested to be effective. We investigated the use of feeding stimulants for D. suzukii as a method to improve longevity and efficacy in a range of insecticides. In laboratory bioassays, sugar increased the efficacy of all chemical classes tested; however, the inclusion of yeast only showed a benefit with malathion. Feeding stimulants had a limited effect in some cases under field conditions. Similarly, infestation in field plots and a semifield bioassay showed no significant decreases in infestation with the inclusion of feeding stimulants for the insecticides tested in these trials. We discuss the implications of these findings for managing D. suzukii in fruit crops to help ensure the harvest of marketable fruit.


Asunto(s)
Insecticidas , Animales , Drosophila , Frutas , Control de Insectos , Malatión
6.
Environ Entomol ; 50(1): 117-125, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290563

RESUMEN

The Vector Manipulation Hypothesis (VMH) posits that phytopathogens develop strategies to enhance dissemination by mediating behavior change in insect vectors. The VMH is poorly studied in phytopathogenic bacteria, especially in systems with numerous, occasional vectors. Erwinia amylovora is a bacterial pathogen of pome fruit that produces a bacterial ooze and is mechanically vectored by insects after they feed on ooze. The blossom blight phase of the disease exhibits manipulation of honeybees, leading to enhanced transmission, but whether the same occurs during the shoot blight phase of the disease is unknown. The goal of this study was to evaluate the effect of E. amylovora on the behavior of Delia platura, a fly with a worldwide endemic presence that may transmit E. amylovora. We show that D. platura prefer infected, oozing fruit to uninfected fruit in choice tests and that preference subsides when bacterial ooze is removed from the infected fruit. Flies did not exhibit a preference between infected saplings and uninfected saplings. The volatiles of infected fruit did not attract D. platura, indicating that diseased fruit odor is not responsible for the observed preference for infected fruit. Flies did not differentiate between sapling odors until infected trees had died, at which point they preferred uninfected tree odors. This study supports previous hypotheses suggesting that E. amylovora takes advantage of existing plant-insect interactions, though it is not fully understood how significantly behavioral changes affect transmission. Additional pathosystems with occasional, nonspecific vectors should be studied to further understanding of the VMH.


Asunto(s)
Dípteros , Erwinia amylovora , Malus , Animales , Frutas , Enfermedades de las Plantas
7.
Pest Manag Sci ; 77(4): 1757-1764, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33236507

RESUMEN

BACKGROUND: Drosophila suzukii (Matsumura), spotted-wing drosophila (SWD), is a major invasive pest of soft-skinned fruits in North America and Europe. Although insecticides are currently the primary method of SWD control, it is imperative to develop alternative management approaches, such as behavioral control through the use of repellents and attractants. This study explores the repellent properties of 2-pentylfuran as an oviposition deterrent on raspberries. RESULTS: 2-Pentylfuran was found to be aversive to SWD in laboratory multiple-choice tests. When co-released from a vial (loaded as neat compound) with a synthetic SWD lure, 2-pentylfuran reduced SWD attraction to the SWD lure by 98% and the effect appeared 17% stronger compared to 1-octen-3-ol, a known SWD repellent. Releasing 50% 2-pentylfuran mixed with mineral oil from a vial located near ripe raspberries resulted in 30% reduction in SWD oviposition in the field. In laboratory no-choice assays, 2-pentylfuran reduced SWD oviposition on raspberries above 2.5 mg h-1 with greater repellency achieved at higher release rates. A release rate of 10 mg h-1 from a polyethylene sachet reduced egg-laying on raspberries by 60% in a semifield cage choice experiment. In a field experiment using fruiting raspberry clusters, 14 mg h-1 release rate of 2-pentylfuran was effective at reducing SWD infestations by 56% compared to untreated plots. CONCLUSION: 2-Pentylfuran acts as a repellent for SWD and can significantly reduce fruit infestations under field conditions and high SWD pressure. Given that 2-pentylfuran is a registered food additive and generally regarded as safe, 2-pentylfuran has a potential use in behavioral control strategies against SWD. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Drosophila , Control de Insectos , Animales , Europa (Continente) , Femenino , Frutas , Furanos , América del Norte
8.
Insects ; 11(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126451

RESUMEN

The grape mealybug Pseudococcus maritimus (Ehrhorn, 1900) (Hemiptera: Pseudococcidae) is a significant pest of grapevines (Vitis spp.) and a vector of disease-causing grape viruses, linked to its feeding on phloem sap. The management of this pest is constrained by the lack of naturally occurring resistance traits in Vitis. Here, we obtained proof of concept that RNA interference (RNAi) using double-stranded RNA (dsRNA) molecules against essential genes for phloem sap feeding can depress insect survival. The genes of interest code for an aquaporin (AQP) and a sucrase (SUC) that are required for osmoregulation in related phloem sap-feeding hemipteran insects (aphids and whiteflies). In parallel, we investigated the grape mealybug genes coding non-specific nucleases (NUC), which reduce RNAi efficacy by degrading administered dsRNA. Homologs of AQP and SUC with experimentally validated function in aphids, together with NUC, were identified in the published transcriptome of the citrus mealybug Planococcus citri by phylogenetic analysis, and sequences of the candidate genes were obtained for Ps. maritimus by PCR with degenerate primers. Using this first sequence information for Ps. maritimus, dsRNA was prepared and administered to the insects via an artificial diet. The treatment comprising dsRNA against AQP, SUC and NUC significantly increased insect mortality over three days, relative to dsRNA-free controls. The dsRNA constructs for AQP and NUC were predicted, from sequence analysis to have some activity against other mealybugs, but none of the three dsRNA constructs have predicted activity against aphids. This study provides the basis to develop in planta RNAi strategies against Ps. maritimus and other mealybug pests of grapevines.

9.
J Chem Ecol ; 46(8): 688-698, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31879864

RESUMEN

The olfactory cues used by various animals to detect and identify food items often include volatile organic compounds (VOCs) produced by food-associated microorganisms. Microbial VOCs have potential as lures to trap animal pests, including insect crop pests. This study investigated microorganisms whose VOCs are attractive to natural populations of the spotted wing drosophila (SWD), an invasive insect pest of ripening fruits. The microorganisms readily cultured from wild SWD and SWD-infested fruits included yeasts, especially Hanseniaspora species, and various bacteria, including Proteobacteria (especially Acetobacteraceae and Enterobacteriaceae) and Actinobacteria. Traps in a raspberry planting that were baited with cultures of Hanseniaspora uvarum, H. opuntiae and the commercial lure Scentry trapped relatively high numbers of both SWD and non-target drosophilids. The VOCs associated with these baits were dominated by ethyl acetate and, for yeasts, other esters. By contrast, Gluconobacter species (Acetobacteraceae), whose VOCs were dominated by acetic acid and acetoin and lacked detectable ethyl acetate, trapped 60-75% fewer SWD but with very high selectivity for SWD. VOCs of two other taxa tested, the yeast Pichia sp. and Curtobacterium sp. (Actinobacteria), trapped very few SWD or other insects. Our demonstration of among-microbial variation in VOCs and their attractiveness to SWD and non-pest insects under field conditions provides the basis for improved design of lures for SWD management. Further research is required to establish how different microbial VOC profiles may function as reliable cues of habitat suitability for fly feeding and oviposition, and how this variation maps onto among-insect species differences in habitat preference.


Asunto(s)
Señales (Psicología) , Drosophila/fisiología , Percepción Olfatoria , Compuestos Orgánicos Volátiles/metabolismo , Actinobacteria/química , Animales , Femenino , Hanseniaspora/química , Masculino , Proteobacteria/química , Distribución Aleatoria
10.
Insect Sci ; 27(4): 771-779, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31087762

RESUMEN

Herbivorous insects may benefit from avoiding the smell produced by phytopathogens infecting plant host tissue if the infected tissue reduces insect fitness. However, in many cases the same species of phytopathogen can also infect host plant tissues that do not directly affect herbivore fitness. Thus, insects may benefit from differentiating between pathogen odors emanating from food and nonfood tissues. This is based on the hypothesis that unnecessarily staying attentive to pathogen odor from nonfood tissue may incur opportunity costs associated with not responding to other important survival functions. In this study adults of Drosophila suzukii Matsumura, an invasive larval frugivore, showed reduced attraction to the odor of raspberry fruit, a food tissue, when infected with Botrytis cinerea Pers., a ubiquitous phytopathogen, in favor of odors of uninfected raspberry fruit. Moreover, D. suzukii oviposited fewer eggs on infected raspberry fruit relative to uninfected raspberry fruit. Larval survival and adult size after eclosion were significantly reduced when reared on B. cinerea-infected raspberry relative to uninfected fruit. Interestingly, when the behavioral choice experiment was repeated using Botrytis-infected vs. -uninfected strawberry leaves, a nonfood tissue, in combination with fresh raspberry fruit, odor from B. cinerea-infected leaves did not reduce D. suzukii attraction to raspberries relative to raspberries with uninfected leaves. These behavioral results illustrate the important role context can play in odor-mediated interactions between insects, plants and microbes. We discuss implications of our findings for developing a repellent that can be useful for the management of D. suzukii.


Asunto(s)
Botrytis/química , Drosophila/fisiología , Frutas/química , Odorantes/análisis , Percepción Olfatoria , Rubus/química , Animales , Reacción de Prevención , Drosophila/crecimiento & desarrollo , Femenino , Frutas/metabolismo , Frutas/microbiología , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Oviposición , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Rubus/metabolismo , Rubus/microbiología
11.
J Econ Entomol ; 112(6): 2850-2860, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31429468

RESUMEN

The invasive spotted-wing drosophila, Drosophila suzukii (Matsumura), is a major pest of soft-skinned fruits. Since its introduction into North America and Europe, significant progress has been made in understanding the volatile cues used by this fly during food, oviposition site, and mate finding. Despite this progress, commercially available lures are non-selective. Here, we tested two Hanseniaspora uvarum (Niehaus) yeast compounds (isoamyl acetate and isobutyl acetate) and a leaf compound ß-cyclocitral alone and in combination with a blend of four fermentation compounds ('Fermentation lure': acetic acid, ethanol, methionol, and acetoin) to improve D. suzukii attraction and selectivity. In laboratory assays, males and females were attracted to all seven individual compounds, although in electrophysiological assays, their antennae exhibited a dose-dependent response to only four of these compounds. In two-choice cage studies, the Fermentation lure was more attractive to D. suzukii than water controls, whereas ß-cyclocitral and the mixture of isoamyl acetate and isobutyl acetate were not attractive in this larger-cage study. Moreover, adding the two-component H. uvarum compound blend to the Fermentation lure reduced D. suzukii attraction to the Fermentation blend. When these experiments were repeated in blueberry, raspberry, blackberry, and cherry orchards across several states in the United States over 2 yr, similar outcomes were observed: ß-cyclocitral or the mixture of the H. uvarum blend did not improve the attractiveness of the Fermentation lure or its selectivity. This study demonstrates that cues from different sources may interfere with each other and reduce D. suzukii attraction to otherwise attractive odor combinations.


Asunto(s)
Drosophila , Odorantes , Animales , Señales (Psicología) , Europa (Continente) , Femenino , Control de Insectos , Masculino , América del Norte
12.
Environ Entomol ; 47(4): 946-950, 2018 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-29668879

RESUMEN

Fermentation volatiles attract a wide variety of insects and are used for integrated pest management. However, identification of the key behavior modifying chemicals has often been challenging due to the time consuming nature of thorough behavioral tests and unexpected discrepancies between laboratory and field results. Thus we report on a multiple-choice bioassay approach that may expedite the process of identifying field-worthy attractants in the laboratory. We revisited the four-component key chemical blend (acetic acid, ethanol, acetoin, and methionol) identified from 12 antennally active wine and vinegar chemicals for Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). The identification of this blend took 2 yr of continuous laboratory two-choice assays and then similarly designed field trials. This delay was mainly due to a discrepancy between laboratory and field results that laboratory two-choice assay failed to identify methionol as an attractant component. Using a multiple-choice approach, we compared the co-attractiveness of the 12 potential attractants to an acetic acid plus ethanol mixture, known as the basal attractant for D. suzukii, and found similar results as the previous field trials. Only two compounds, acetoin and, importantly, methionol, increased attraction to a mixture of acetic acid and ethanol, suggesting the identification of the four-component blend could have been expedited. Interestingly, the co-attractiveness of some of the 12 individual compounds, including a key attractant, methionol, appears to change when they were tested under different background odor environments, suggesting that background odor can influence detection of potential attractants. Our findings provide a potentially useful approach to efficiently identify behaviorally bioactive fermentation chemicals.


Asunto(s)
Quimiotaxis , Drosophila/fisiología , Control de Insectos/métodos , Feromonas/farmacología , Compuestos Orgánicos Volátiles/farmacología , Ácido Acético/química , Ácido Acético/farmacología , Acetoína/farmacología , Animales , Etanol/farmacología , Femenino , Fermentación , Masculino , Propanoles/farmacología , Distribución Aleatoria , Sulfuros/farmacología , Vino/análisis
13.
J Econ Entomol ; 111(2): 645-652, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29365137

RESUMEN

Drosophila suzukii (Matsumura; Diptera: Drosophilidae) is one of the most serious invasive pests of berries and cherries worldwide. Several adult monitoring systems are available to time foliar application of insecticides with the expectation of detecting the presence of D. suzukii before they infest susceptible crops. We tested this by comparing four different trapping systems based on two homemade baits, apple cider vinegar (ACV) or fermenting dough, and two fermentation volatile-based commercial lures, Scentry and Trécé. Traps baited with dough or Scentry captured more D. suzukii than traps baited with ACV or Trécé in blueberries and traps baited with Trécé in raspberries. In blueberries, traps baited with Scentry, Trécé and dough provided 11-21 d of warning prior to first detection of fruit infestation. However, these traps were not as effective in summer floricane raspberries. The Scentry lure baited traps detected D. suzukii on the same week as the first detection of fruit infestation and other trapping systems detected the fly 4 to 11 d after the first detection, suggesting the need for an improved D. suzukii detection system in raspberries. Both synthetic lures (Scentry and Trécé) were significantly more selective for D. suzukii than dough bait, although the selectivity of all four tested lures/baits were relatively low at <20%. Our results suggest that in locations where D. suzukii adults are not trapped in late winter and spring, adult monitoring of D. suzukii using a sensitive trapping system may provide early warning of pending infestation risk thereby potentially reducing unnecessary insecticide applications.


Asunto(s)
Drosophila , Control de Insectos/instrumentación , Animales , Arándanos Azules (Planta) , Femenino , Masculino , Rubus , Estaciones del Año , Especificidad de la Especie
14.
Pest Manag Sci ; 72(4): 701-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25973596

RESUMEN

BACKGROUND: Drosophilia suzukii Matsumura is an invasive pest insect that lays its eggs in the fruit of several commercially grown crops. An effective oviposition deterrent could contribute to its management. Repellant odors were evaluated in the laboratory and in the field. RESULTS: Geosmin and 1-octen-3-ol were found to be aversive to seven-day-old female D. suzukii at concentrations of 10(-1) and 10(-2) in laboratory choice tests. Field experiments found that fewer eggs were observed in fruit on the day of harvest and fewer adult D. suzukii were reared from fruit associated with 1-octen-3-ol odors than control fruit in cultivated red raspberry. CONCLUSION: Geosmin and 1-octen-3-ol induce aversive behaviors in Drosophila suzukii and are potential oviposition deterrents for its management in fruit crops.


Asunto(s)
Conducta Animal/efectos de los fármacos , Drosophila/efectos de los fármacos , Drosophila/fisiología , Control de Insectos/métodos , Odorantes/análisis , Oviposición/efectos de los fármacos , Animales , Conducta Animal/fisiología , Conducta de Elección/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Laboratorios , Rubus/química , Compuestos Orgánicos Volátiles/farmacología
15.
Biochemistry ; 54(44): 6663-72, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26488609

RESUMEN

PKR is a member of the eIF2α family of protein kinases that inhibit translational initiation in response to stress stimuli and functions as a key mediator of the interferon-induced antiviral response. PKR contains a dsRNA binding domain that binds to duplex regions present in viral RNAs, resulting in kinase activation and autophosphorylation. An emerging theme in the regulation of protein kinases is the allosteric linkage of dimerization and activation. The PKR kinase domain forms a back-to-back parallel dimer that is implicated in activation. We have developed a sensitive homo-Förster resonance energy transfer assay for kinase domain dimerization to directly probe the relationship among RNA binding, activation, and dimerization. In the case of perfect duplex RNAs, dimerization is correlated with activation and dsRNAs containing 30 bp or more efficiently induce kinase domain dimerization and activation. However, more complex duplex RNAs containing a 10-15 bp 2'-O-methyl RNA barrier produce kinase dimers but do not activate. Similarly, inactivating mutations within the PKR dimer interface that disrupt key electrostatic and hydrogen binding interactions fail to abolish dimerization. Our data support a model in which activating RNAs induce formation of a back-to-back parallel PKR kinase dimer whereas nonactivating RNAs either fail to induce dimerization or produce an alternative, inactive dimer configuration, providing an additional mechanism for distinguishing between host and pathogen RNA.


Asunto(s)
Activación Enzimática , Multimerización de Proteína , ARN Bicatenario/metabolismo , eIF-2 Quinasa/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Metilación , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , ARN Bicatenario/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , eIF-2 Quinasa/química
16.
Environ Entomol ; 42(5): 1052-60, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24331615

RESUMEN

We determined the attractiveness of a new chemical lure compared with fermented food baits in use for trapping Drosophila suzukii Matsumura, spotted wing drosophila (Diptera: Drosophilidae), in Connecticut, New York, and Washington in the United States and at Dossenheim in Germany. The chemical lure (SWD lure) and food baits were compared in two types of traps: the dome trap and a cup trap. Regardless of trap type, numbers of male and female D. suzukii trapped were greater with the SWD lure compared with apple cider vinegar (ACV) baits at the Washington and New York sites, and were comparable with numbers of D. suzukii captured with a wine plus vinegar bait (W + V) at Germany site and a combination bait meant to mimic W + V at the Connecticut site. Averaged over both types of attractants, the numbers of D. suzukii captured were greater in dome traps than in cup traps in New York and Connecticut for both male and female D. suzukii and in Washington for male D. suzukii. No such differences were found between trap types at the Washington site for female and Germany for male and female D. suzukii. Assessments were also made of the number of large (>0.5 cm) and small (<0.5 cm) nontarget flies trapped. The SWD lure captured fewer nontarget small flies and more large flies compared with ACV bait in New York and fewer nontarget small flies compared with W + V in Germany, although no such differences were found in Washington for the SWD lure versus ACV bait and in Connecticut for the SWD lure versus the combination bait, indicating that these effects are likely influenced by the local nontarget insect community active at the time of trapping. In New York, Connecticut, and Germany, dome traps caught more nontarget flies compared with cup traps. Our results suggest that the four-component SWD chemical lure is an effective attractant for D. suzukii and could be used in place of fermented food-type baits.


Asunto(s)
Drosophila , Frutas , Control de Insectos/métodos , Feromonas , Animales , Drosophila/fisiología , Femenino , Fermentación , Frutas/metabolismo , Alemania , Masculino , Feromonas/farmacología , Estados Unidos
17.
Environ Entomol ; 42(1): 150-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23339796

RESUMEN

Oil-coated clear panel traps baited with a host plant-based kairomone lure have successfully been used for monitoring female grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), but low capture rates as well as difficulty in servicing these traps makes them unsuitable for commercial use. We compared the performance of different trap designs in a flight tunnel and in a vineyard by using a 7-component synthetic kairomone blend, with a focus on trap visual cues. In flight tunnel experiments, a clear delta trap performed better than other traps. When we tested clear delta, green delta, or clear wing traps baited with a cut grape shoot, >50% of female grape berry moths made complete upwind flights. However, the clear delta trap was the only design that resulted in female moths entering the trap. Similar results were observed when females were tested with different traps (clear delta, green delta, white delta, clear wing, or green wing traps) baited with the kairomone lure. Adding a visual pattern that mimicked grape shoots to the outside surface of the clear delta trap resulted in 66% of the females that made upwind flights entering the trap. However, the positive effect of adding a visual pattern to the trap was not observed in a vineyard setting, where clear delta traps with or without a visual pattern caught similar numbers of females. Still, the number of male and female grape berry moths captured in clear delta traps with or without a visual pattern was not significantly different from the number of male and female grape berry moths captured in panel traps, suggesting that the use of these delta traps could be a less cumbersome alternative to oil-coated panel traps for monitoring female grape berry moth.


Asunto(s)
Control de Insectos/instrumentación , Mariposas Nocturnas , Feromonas , Animales , Conducta Animal , Color , Señales (Psicología) , Femenino , Vuelo Animal , Masculino
18.
FEBS Lett ; 586(16): 2313-7, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-22750143

RESUMEN

The selective deamination of adenosines (A) to inosines (I) in messenger RNAs (mRNAs) can alter the encoded protein's amino acid sequence, with often critical consequences on protein stability, localization, and/or function. Insulin-like growth factor-binding protein 7 (IGFBP7) supports cell-adhesion and stimulates fibroblast proliferation with IGF and insulin. It exists in both proteolytically processed and unprocessed forms with altered cell-extracellular matrix interactions. Here we show that editing of IGFBP7 transcripts impacts the protein's susceptibility to proteolytic cleavage, thus providing a means for a cell to modulate its functionality through A-to-I RNA editing.


Asunto(s)
Adenosina Desaminasa/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Serina Endopeptidasas/metabolismo , Adenosina/química , Secuencia de Bases , Adhesión Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Fibroblastos/citología , Humanos , Inosina/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Isoformas de Proteínas , Proteolisis , Edición de ARN , Proteínas de Unión al ARN , Distribución Tisular
19.
Environ Entomol ; 40(6): 1511-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22217768

RESUMEN

For some Lepidopteran pests, such as the grape berry moth Paralobesia viteana (Clemens), poor correlation between males captured in traps baited with sex pheromone and oviposition activities of female moths has called into question the value of pheromone-based monitoring for these species. As an alternative, we compared the capture of female and male grape berry moth in panel traps baited with synthetic host volatiles with captures of males in pheromone-baited wing traps over two growing seasons in two blocks of grapes in a commercial vineyard in central New York. Lures formulated in hexane to release either 7-component or 13-component host volatile blends captured significantly more male and female grape berry moth on panel traps compared with the numbers captured on panel traps with hexane-only lures. For both sexes over both years, the same or more moths were captured in panel traps along the forest edge compared with the vineyard edge early in the season but this pattern was reversed by mid-season. Male moths captured in pheromone-baited wing traps also displayed this temporal shift in location. There was a significant positive correlation between captured males and females on panel traps although not between females captured on panel traps and males captured in pheromone-baited traps for both years suggesting pheromone traps do not accurately reflect either female or male activity. Male moths captured in pheromone traps indicated a large peak early in each season corresponding to first flight followed by lower and variable numbers that did not clearly indicate second and third flights. Panel trap data, combining males and females, indicated three distinct flights, with some overlap between the second and third flights. Peak numbers of moths captured on panel traps matched well with predictions of a temperature-based phenology model, especially in 2008. Although effective, panel traps baited with synthetic host lures were time consuming to deploy and maintain and captured relatively few moths making them impractical, in the current design, for commercial purposes.


Asunto(s)
Control de Insectos/métodos , Mariposas Nocturnas/efectos de los fármacos , Feromonas/farmacología , Vitis/química , Animales , Femenino , Masculino , Mariposas Nocturnas/fisiología , New York , Estaciones del Año , Atractivos Sexuales/farmacología , Distribución por Sexo , Compuestos Orgánicos Volátiles/farmacología
20.
J Chem Ecol ; 34(9): 1180-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18649104

RESUMEN

Solid-phase microextraction (SPME) and gas chromatography coupled with electroantennographic detection (GC-EAD) were used to identify volatile compounds from shoots of riverbank grape (Vitis riparia) that attract the female grape berry moth (GBM, Paralobesia viteana). Consistent EAD activity was obtained for 11 chemicals: (Z)-3-hexen-1-yl acetate, (E)-linalool oxide, (Z)-linalool oxide, nonanal, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, beta-caryophyllene, germacrene-D, and alpha-farnesene. In flight-tunnel tests that involved female GBM and rubber septa loaded with subsets of these 11 compounds, we found that both the 11-component blend and a seven-component blend, composed of (E)-linalool oxide, (Z)-linalool oxide, nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, decanal, beta-caryophyllene and germacrene-D, elicited equivalent levels of upwind flight as freshly cut grape shoots. The removal of any of the seven compounds from the seven-component blend resulted in a significant decrease in female upwind flight responses. In a field trial with these two synthetic blends, traps equipped with either blend captured more female GBM compared to traps baited with hexane only (control), although the number of females caught was generally low. There were no differences in the number of males captured among treatments. Although in flight-tunnel trials, moths readily flew upwind to both grape shoots and rubber septa loaded with the best lures, they landed on shoots but not on rubber septa. Coupled with relatively low field catches, this suggests that additional host finding cues need to be identified to improve trap efficacy.


Asunto(s)
Conducta Animal/efectos de los fármacos , Control de Insectos/métodos , Mariposas Nocturnas/fisiología , Odorantes , Control Biológico de Vectores/métodos , Vitis/química , Animales , Femenino , Mariposas Nocturnas/crecimiento & desarrollo , Odorantes/análisis , Brotes de la Planta/química , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...