Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37642996

RESUMEN

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Asunto(s)
Fibrosis Quística , Eucariontes , Humanos , Factor 2 de Elongación Peptídica , Inflamasomas , Citoplasma , Proteínas NLR
2.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35849616

RESUMEN

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Asunto(s)
Inflamasomas , Piroptosis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasa 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/microbiología , Pseudomonas aeruginosa/metabolismo
4.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594856

RESUMEN

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Células Epiteliales , Inflamasomas , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Caspasa 3/metabolismo , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Pulmón/metabolismo , Pulmón/virología , Proteínas NLR/genética , Proteínas NLR/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad
5.
Nat Commun ; 13(1): 1927, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395851

RESUMEN

Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.


Asunto(s)
Aminopeptidasas , Simulación de Dinámica Molecular , Aminopeptidasas/metabolismo , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Péptidos
6.
PLoS Pathog ; 17(9): e1009927, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516571

RESUMEN

Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Peroxidación de Lípido/fisiología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidad , Animales , Humanos , Ratones , Ratones Noqueados , Necrosis/metabolismo , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/metabolismo , Virulencia/fisiología
7.
Structure ; 29(9): 1065-1073.e4, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33974880

RESUMEN

Tim chaperones transport membrane proteins to the two mitochondrial membranes. TIM9·10, a 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase TIM22. The subunit composition of TIM9·10·12 remains debated. Joint NMR, small-angle X-ray scattering, and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, with a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). Both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes timescale. NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short α helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange allows mitochondria to control their level of inter-membrane space chaperones.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/química , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355130

RESUMEN

Chaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8·13 and TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain. Combining NMR, SAXS, and molecular dynamics simulations, we determine the structures of Tim23/TIM8·13 and Tim23/TIM9·10 complexes. TIM8·13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9·10. Consequently, TIM9·10 outcompetes TIM8·13 in binding hydrophobic clients, while TIM8·13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity versus specificity.


Asunto(s)
Membranas Mitocondriales , Chaperonas Moleculares , Humanos , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Chaperonas Moleculares/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
EMBO Rep ; 21(11): e50829, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124769

RESUMEN

Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.


Asunto(s)
Caspasas , Lipopolisacáridos , Familia de las Proteínas 8 Relacionadas con la Autofagia , Caspasas/genética , Caspasas Iniciadoras , Bacterias Gramnegativas , Inflamasomas/genética , Macrófagos
10.
Sci Adv ; 5(9): eaaw3818, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31517045

RESUMEN

Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.


Asunto(s)
Proteínas Bacterianas , Endopeptidasa Clp , Inhibidores de Proteasas/química , Thermus thermophilus/enzimología , Regulación Alostérica , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Dominio Catalítico , Cristalografía por Rayos X , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/química
11.
J Am Chem Soc ; 141(28): 11183-11195, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31199882

RESUMEN

Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.


Asunto(s)
Aminopeptidasas/química , Resonancia Magnética Nuclear Biomolecular , Termodinámica , Aminopeptidasas/metabolismo , Isótopos de Carbono , Conformación Proteica , Protones , Pyrococcus horikoshii/enzimología
12.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445040

RESUMEN

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
13.
Pathog Dis ; 76(8)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452651

RESUMEN

The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis/metabolismo , Calmodulina/metabolismo , AMP Cíclico/metabolismo , Acilación , Toxina de Adenilato Ciclasa/química , Calcio/metabolismo , Membrana Celular/metabolismo , Células Eucariotas , Humanos , Potenciales de la Membrana , Permeabilidad , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
15.
J Phys Chem Lett ; 9(5): 933-938, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29397729

RESUMEN

Characterizing the structure of membrane proteins (MPs) generally requires extraction from their native environment, most commonly with detergents. Yet, the physicochemical properties of detergent micelles and lipid bilayers differ markedly and could alter the structural organization of MPs, albeit without general rules. Dodecylphosphocholine (DPC) is the most widely used detergent for MP structure determination by NMR, but the physiological relevance of several prominent structures has been questioned, though indirectly, by other biophysical techniques, e.g., functional/thermostability assay (TSA) and molecular dynamics (MD) simulations. Here, we resolve unambiguously this controversy by probing the functional relevance of three different mitochondrial carriers (MCs) in DPC at the atomic level, using an exhaustive set of solution-NMR experiments, complemented by functional/TSA and MD data. Our results provide atomic-level insight into the structure, substrate interaction and dynamics of the detergent-membrane protein complexes and demonstrates cogently that, while high-resolution NMR signals can be obtained for MCs in DPC, they systematically correspond to nonfunctional states.


Asunto(s)
Detergentes/química , Micelas , Proteínas de Transporte de Membrana Mitocondrial/química , Fosforilcolina/análogos & derivados , Translocasas Mitocondriales de ADP y ATP/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/química , Conformación Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
16.
Toxicon ; 149: 37-44, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29337218

RESUMEN

The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Calcio/química , Modelos Biológicos , Tos Ferina/microbiología , Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis , Células Eucariotas/microbiología , Dominios Proteicos , Pliegue de Proteína , Sistemas de Translocación de Proteínas , Transporte de Proteínas
17.
Nat Commun ; 8(1): 145, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28747759

RESUMEN

Proteins perform their functions in solution but their structures are most frequently studied inside crystals. Here we probe how the crystal packing alters microsecond dynamics, using solid-state NMR measurements and multi-microsecond MD simulations of different crystal forms of ubiquitin. In particular, near-rotary-resonance relaxation dispersion (NERRD) experiments probe angular backbone motion, while Bloch-McConnell relaxation dispersion data report on fluctuations of the local electronic environment. These experiments and simulations reveal that the packing of the protein can significantly alter the thermodynamics and kinetics of local conformational exchange. Moreover, we report small-amplitude reorientational motion of protein molecules in the crystal lattice with an ~3-5° amplitude on a tens-of-microseconds time scale in one of the crystals, but not in others. An intriguing possibility arises that overall motion is to some extent coupled to local dynamics. Our study highlights the importance of considering the packing when analyzing dynamics of crystalline proteins.X-ray crystallography is the main method for protein structure determination. Here the authors combine solid-state NMR measurements and molecular dynamics simulations and show that crystal packing alters the thermodynamics and kinetics of local conformational exchange as well as overall rocking motion of protein molecules in the crystal lattice.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Conformación Proteica , Ubiquitina/química , Algoritmos , Cristalografía por Rayos X , Humanos , Cinética , Movimiento (Física) , Termodinámica
18.
Solid State Nucl Magn Reson ; 87: 86-95, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28438365

RESUMEN

Solid-state NMR spectroscopy can provide site-resolved information about protein dynamics over many time scales. Here we combine protein deuteration, fast magic-angle spinning (~45-60kHz) and proton detection to study dynamics of ubiquitin in microcrystals, and in particular a mutant in a region that undergoes microsecond motions in a ß-turn region in the wild-type protein. We use 15N R1ρ relaxation measurements as a function of the radio-frequency (RF) field strength, i.e. relaxation dispersion, to probe how the G53A mutation alters these dynamics. We report a population-inversion of conformational states: the conformation that in the wild-type protein is populated only sparsely becomes the predominant state. We furthermore explore the potential to use amide-1H R1ρ relaxation to obtain insight into dynamics. We show that while quantitative interpretation of 1H relaxation remains beyond reach under the experimental conditions, due to coherent contributions to decay, one may extract qualitative information about flexibility.


Asunto(s)
Proteínas Mutantes/química , Mutación , Resonancia Magnética Nuclear Biomolecular , Ubiquitina/química , Cristalografía por Rayos X , Modelos Moleculares , Proteínas Mutantes/genética , Conformación Proteica , Ubiquitina/genética
19.
Angew Chem Int Ed Engl ; 56(9): 2508-2512, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28128538

RESUMEN

The structure, dynamics, and function of membrane proteins are intimately linked to the properties of the membrane environment in which the proteins are embedded. For structural and biophysical characterization, membrane proteins generally need to be extracted from the membrane and reconstituted in a suitable membrane-mimicking environment. Ensuring functional and structural integrity in these environments is often a major concern. The styrene/maleic acid co-polymer has recently been shown to be able to extract lipid/membrane protein patches directly from native membranes to form nanosize discoidal proteolipid particles, also referred to as native nanodiscs. In this work, we show that high-resolution solid-state NMR spectra can be obtained from an integral membrane protein in native nanodiscs, as exemplified by the 2×34 kDa bacterial cation diffusion facilitator CzcD.


Asunto(s)
Proteínas Bacterianas/química , Cupriavidus/química , Maleatos/química , Proteínas de Transporte de Membrana/química , Poliestirenos/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Difusión , Nanoestructuras/química , Proteolípidos/química , Protones , Zinc/química
20.
J Phys Chem B ; 120(34): 8905-13, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27500976

RESUMEN

Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Anisotropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...