Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Nucleic Acids Res ; 52(4): 1736-1752, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38109306

Repair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations. Several variants of DSBR reporters are available, however these are often limited by throughput or restricted to specific cellular models. Here, we describe the generation and validation of a suite of extrachromosomal reporter assays that can efficiently measure the major DSBR pathways of homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single strand annealing (SSA). We demonstrate that these assays can be adapted to a high-throughput screening format and that they are sensitive to pharmacological modulation, thus providing mechanistic and quantitative insights into compound potency, selectivity, and on-target specificity. We propose that these reporter assays can serve as tools to dissect the interplay of DSBR pathway networks in cells and will have broad implications for studies of DSBR mechanisms in basic research and drug discovery.


DNA Repair , High-Throughput Screening Assays , DNA/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Repair/genetics , Homologous Recombination , Recombinational DNA Repair , Humans , Cell Line
2.
Mol Cell ; 83(23): 4290-4303.e9, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-37951216

Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.


RNA , Ubiquitin , Humans , RNA/metabolism , Ubiquitination , Ubiquitin/metabolism , Ribosomes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Aldehydes , Protein Biosynthesis
3.
Mol Cell ; 82(24): 4664-4680.e9, 2022 12 15.
Article En | MEDLINE | ID: mdl-36455556

POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.


DNA Breaks, Double-Stranded , Neoplasms , Humans , DNA Replication/genetics , Genomic Instability , DNA, Single-Stranded/genetics , Synthetic Lethal Mutations , DNA End-Joining Repair , Neoplasms/genetics
4.
Mol Cell ; 82(10): 1924-1939.e10, 2022 05 19.
Article En | MEDLINE | ID: mdl-35439434

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.


DNA Breaks, Double-Stranded , Telomere-Binding Proteins , BRCA1 Protein/genetics , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
5.
Elife ; 102021 09 06.
Article En | MEDLINE | ID: mdl-34486521

The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.


Carrier Proteins/metabolism , Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/metabolism , Carrier Proteins/genetics , Cryoelectron Microscopy , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Humans , Kinetics , Models, Molecular , Nuclear Proteins/genetics , Nucleosomes/genetics , Nucleosomes/ultrastructure , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Protein Conformation , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity
6.
Trends Cancer ; 7(12): 1102-1118, 2021 12.
Article En | MEDLINE | ID: mdl-34563478

Homologous recombination-deficient (HRD) tumours, including those harbouring mutations in the BRCA genes, are hypersensitive to treatment with inhibitors of poly(ADP-ribose) polymerase (PARPis). Despite high response rates, most HRD cancers ultimately develop resistance to PARPi treatment through reversion mutations or genetic/epigenetic alterations to DNA repair pathways. Counteracting these resistance pathways, thereby increasing the potency of PARPi therapy, represents a potential strategy to improve the treatment of HRD cancers. In this review, we discuss recent insights derived from genetic screens that have identified a number of novel genes that can be targeted to improve PARPi treatment of HRD cancers and may provide a means to overcome PARPi resistance.


Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Female , Genes, Tumor Suppressor , Homologous Recombination/genetics , Humans , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
7.
Nat Commun ; 12(1): 3636, 2021 06 17.
Article En | MEDLINE | ID: mdl-34140467

To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance.


BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair/drug effects , DNA-Directed DNA Polymerase/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Synthetic Lethal Mutations/drug effects , Allosteric Regulation , Animals , Apoptosis/drug effects , Apoptosis/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleases/antagonists & inhibitors , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Homologous Recombination/drug effects , Humans , Inhibitory Concentration 50 , Mice , Organoids/drug effects , Ovarian Neoplasms/genetics , Rats , Synthetic Lethal Mutations/genetics , Tumor Suppressor p53-Binding Protein 1/deficiency , Tumor Suppressor p53-Binding Protein 1/metabolism , DNA Polymerase theta
8.
Science ; 372(6538): 156-165, 2021 04 09.
Article En | MEDLINE | ID: mdl-33833118

Mutations in the BRCA1 or BRCA2 tumor suppressor genes predispose individuals to breast and ovarian cancer. In the clinic, these cancers are treated with inhibitors that target poly(ADP-ribose) polymerase (PARP). We show that inhibition of DNPH1, a protein that eliminates cytotoxic nucleotide 5-hydroxymethyl-deoxyuridine (hmdU) monophosphate, potentiates the sensitivity of BRCA-deficient cells to PARP inhibitors (PARPi). Synthetic lethality was mediated by the action of SMUG1 glycosylase on genomic hmdU, leading to PARP trapping, replication fork collapse, DNA break formation, and apoptosis. BRCA1-deficient cells that acquired resistance to PARPi were resensitized by treatment with hmdU and DNPH1 inhibition. Because genomic hmdU is a key determinant of PARPi sensitivity, targeting DNPH1 provides a promising strategy for the hypersensitization of BRCA-deficient cancers to PARPi therapy.


Antineoplastic Agents/pharmacology , N-Glycosyl Hydrolases/antagonists & inhibitors , N-Glycosyl Hydrolases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Apoptosis , CRISPR-Cas Systems , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Replication , DNA, Neoplasm/metabolism , Deoxycytidine Monophosphate/analogs & derivatives , Deoxycytidine Monophosphate/metabolism , Deoxycytidine Monophosphate/pharmacology , Deoxyuracil Nucleotides/metabolism , Drug Resistance, Neoplasm , Genes, BRCA1 , Humans , Hydrolysis , N-Glycosyl Hydrolases/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins/genetics , Synthetic Lethal Mutations , Thymidine/analogs & derivatives , Thymidine/antagonists & inhibitors , Thymidine/metabolism , Thymidine/pharmacology , Uracil-DNA Glycosidase/metabolism
9.
J Cell Biol ; 220(5)2021 05 03.
Article En | MEDLINE | ID: mdl-33635313

The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.


Focal Adhesions/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Amino Acids/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , HeLa Cells , Humans , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mice , Signal Transduction/physiology
10.
Mol Cell ; 81(4): 767-783.e11, 2021 02 18.
Article En | MEDLINE | ID: mdl-33333017

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.


Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms, Experimental/metabolism , Nucleosomes/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Animals , DNA Helicases/genetics , DNA Replication/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Binding Proteins/genetics , Homologous Recombination/drug effects , Mice , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Nucleosomes/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics
11.
Cell Rep ; 33(12): 108529, 2020 12 22.
Article En | MEDLINE | ID: mdl-33357431

Upon DNA damage, the ALC1/CHD1L nucleosome remodeling enzyme (remodeler) is activated by binding to poly(ADP-ribose). How activated ALC1 recognizes the nucleosome, as well as how this recognition is coupled to remodeling, is unknown. Here, we show that remodeling by ALC1 requires a wild-type acidic patch on the entry side of the nucleosome. The cryo-electron microscopy structure of a nucleosome-ALC1 linker complex reveals a regulatory linker segment that binds to the acidic patch. Mutations within this interface alter the dynamics of ALC1 recruitment to DNA damage and impede the ATPase and remodeling activities of ALC1. Full activation requires acidic patch-linker segment interactions that tether the remodeler to the nucleosome and couple ATP hydrolysis to nucleosome mobilization. Upon DNA damage, such a requirement may be used to modulate ALC1 activity via changes in the nucleosome acidic patches.


DNA Damage , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Nucleosomes/metabolism , Animals , Histones/metabolism , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Xenopus laevis
12.
Cell Rep ; 33(12): 108546, 2020 12 22.
Article En | MEDLINE | ID: mdl-33357438

Regulator of telomere length 1 (RTEL1) is an essential helicase that maintains telomere integrity and facilitates DNA replication. The source of replication stress in Rtel1-deficient cells remains unclear. Here, we report that loss of RTEL1 confers extensive transcriptional changes independent of its roles at telomeres. The majority of affected genes in Rtel1-/- cells possess G-quadruplex (G4)-DNA-forming sequences in their promoters and are similarly altered at a transcriptional level in wild-type cells treated with the G4-DNA stabilizer TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine). Failure to resolve G4-DNAs formed in the displaced strand of RNA-DNA hybrids in Rtel1-/- cells is suggested by increased R-loops and elevated transcription-replication collisions (TRCs). Moreover, removal of R-loops by RNaseH1 overexpression suppresses TRCs and alleviates the global replication defects observed in Rtel1-/- and Rtel1PIP_box knockin cells and in wild-type cells treated with TMPyP4. We propose that RTEL1 unwinds G4-DNA/R-loops to avert TRCs, which is important to prevent global deregulation in both transcription and DNA replication.


DNA Helicases/metabolism , DNA Replication , G-Quadruplexes , Animals , DNA/biosynthesis , DNA/genetics , Humans , Mice , Transcription, Genetic
13.
Mol Cell ; 76(1): 27-43.e11, 2019 10 03.
Article En | MEDLINE | ID: mdl-31447390

Cancer cells acquire unlimited proliferative capacity by either re-expressing telomerase or inducing alternative lengthening of telomeres (ALT), which relies on telomere recombination. Here, we show that ALT recombination requires coordinate regulation of the SMX and BTR complexes to ensure the appropriate balance of resolution and dissolution activities at recombining telomeres. Critical to this control is SLX4IP, which accumulates at ALT telomeres and interacts with SLX4, XPF, and BLM. Loss of SLX4IP increases ALT-related phenotypes, which is incompatible with cell growth following concomitant loss of SLX4. Inactivation of BLM is sufficient to rescue telomere aggregation and the synthetic growth defect in this context, suggesting that SLX4IP favors SMX-dependent resolution by antagonizing promiscuous BLM activity during ALT recombination. Finally, we show that SLX4IP is inactivated in a subset of ALT-positive osteosarcomas. Collectively, our findings uncover an SLX4IP-dependent regulatory mechanism critical for telomere maintenance in ALT cancer cells.


Bone Neoplasms/enzymology , Carrier Proteins/metabolism , Osteosarcoma/enzymology , RecQ Helicases/metabolism , Telomere Homeostasis , Telomere/metabolism , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carrier Proteins/genetics , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Mice, Knockout , Mice, SCID , Osteosarcoma/genetics , Osteosarcoma/pathology , Protein Binding , Protein Interaction Domains and Motifs , RecQ Helicases/genetics , Recombinases/genetics , Recombinases/metabolism , Signal Transduction , Telomere/genetics , Telomere/pathology
14.
Mol Cell ; 68(5): 847-859.e7, 2017 Dec 07.
Article En | MEDLINE | ID: mdl-29220652

Human ALC1 is an oncogene-encoded chromatin-remodeling enzyme required for DNA repair that possesses a poly(ADP-ribose) (PAR)-binding macro domain. Its engagement with PARylated PARP1 activates ALC1 at sites of DNA damage, but the underlying mechanism remains unclear. Here, we establish a dual role for the macro domain in autoinhibition of ALC1 ATPase activity and coupling to nucleosome mobilization. In the absence of DNA damage, an inactive conformation of the ATPase is maintained by juxtaposition of the macro domain against predominantly the C-terminal ATPase lobe through conserved electrostatic interactions. Mutations within this interface displace the macro domain, constitutively activate the ALC1 ATPase independent of PARylated PARP1, and alter the dynamics of ALC1 recruitment at DNA damage sites. Upon DNA damage, binding of PARylated PARP1 by the macro domain induces a conformational change that relieves autoinhibitory interactions with the ATPase motor, which selectively activates ALC1 remodeling upon recruitment to sites of DNA damage.


Chromatin Assembly and Disassembly , DNA Damage , DNA Helicases/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Nucleosomes/enzymology , Catalytic Domain , Cell Line, Tumor , DNA Helicases/chemistry , DNA Helicases/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Enzyme Activation , Humans , Microscopy, Electron , Molecular Dynamics Simulation , Mutation , Nucleosomes/chemistry , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly ADP Ribosylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Scattering, Small Angle , Static Electricity , Structure-Activity Relationship , Time Factors , X-Ray Diffraction
15.
Trends Cell Biol ; 27(5): 340-351, 2017 05.
Article En | MEDLINE | ID: mdl-28011061

(Macro)Autophagy is a catabolic pathway that delivers excess, aggregated, or damaged proteins and organelles to lysosomes for degradation. Autophagy is activated in response to numerous cellular stressors such as increased levels of reactive oxygen species (ROS) and low levels of cellular nutrients as well as DNA damage. Although autophagy occurs in the cytoplasm, its inhibition leads to accumulation of DNA damage and genomic instability. In the past few years, our understanding of the interplay between autophagy and genomic stability has greatly increased. In this review we summarize these recent advances in understanding the molecular mechanisms linking autophagy to DNA repair.


Autophagy , Genome , Animals , DNA Breaks, Double-Stranded , DNA Repair , Humans , Models, Biological
16.
Mol Cell ; 64(4): 688-703, 2016 11 17.
Article En | MEDLINE | ID: mdl-27871365

Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled by several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.


Caenorhabditis elegans Proteins/chemistry , DNA Repair , DNA-Binding Proteins/chemistry , DNA/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Xeroderma Pigmentosum Group A Protein/chemistry , Amino Acid Sequence , Animals , Binding Sites , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/radiation effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line , Cisplatin/chemistry , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/radiation effects , Formaldehyde/chemistry , HeLa Cells , Humans , Kinetics , Mice , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Ultraviolet Rays , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/metabolism
17.
Autophagy ; 12(10): 1917-1930, 2016 10 02.
Article En | MEDLINE | ID: mdl-27391408

SQSTM1/p62 (sequestosome 1) selectively targets polyubiquitinated proteins for degradation via macroautophagy and the proteasome. Additionally, SQSTM1 shuttles between the cytoplasmic and nuclear compartments, although its role in the nucleus is relatively unknown. Here, we report that SQSTM1 dynamically associates with DNA damage foci (DDF) and regulates DNA repair. Upon induction of DNA damage SQSTM1 interacts with FLNA (filamin A), which has previously been shown to recruit DNA repair protein RAD51 (RAD51 recombinase) to double-strand breaks and facilitate homologous recombination (HR). SQSTM1 promotes proteasomal degradation of FLNA and RAD51 within the nucleus, resulting in reduced levels of nuclear RAD51 and slower DNA repair. SQSTM1 regulates the ratio between HR and nonhomologous end joining (NHEJ) by promoting the latter at the expense of the former. This SQSTM1-dependent mechanism mediates the effect of macroautophagy on DNA repair. Moreover, nuclear localization of SQSTM1 and its association with DDF increase with aging and are prevented by life-span-extending dietary restriction, suggesting that an imbalance in the mechanism identified here may contribute to aging and age-related diseases.


Autophagy , DNA Repair , Proteasome Endopeptidase Complex/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin/metabolism , Animals , Cell Nucleus/metabolism , DNA Damage , Filamins , Kinetics , Mice, Inbred C57BL , Models, Biological , Protein Transport , Proteolysis , Rad51 Recombinase/metabolism
18.
EMBO J ; 35(7): 724-42, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26848154

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1ß-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1ß deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


Aging/physiology , Mitochondria/physiology , Animals , Cell Line , Humans , Mice , Models, Biological , Phenotype
19.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1124-37, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-26386121

Cellular senescence has been associated with the structural and functional decline observed during physiological lung aging and in chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the first line of defense in the lungs and are important to COPD pathogenesis. However, the mechanisms underlying airway epithelial cell senescence, and particularly the role of telomere dysfunction in this process, are poorly understood. We aimed to investigate telomere dysfunction in airway epithelial cells from patients with COPD, in the aging murine lung and following cigarette smoke exposure. We evaluated colocalization of γ-histone protein 2A.X and telomeres and telomere length in small airway epithelial cells from patients with COPD, during murine lung aging, and following cigarette smoke exposure in vivo and in vitro. We found that telomere-associated DNA damage foci increase in small airway epithelial cells from patients with COPD, without significant telomere shortening detected. With age, telomere-associated foci increase in small airway epithelial cells of the murine lung, which is accelerated by cigarette smoke exposure. Moreover, telomere-associated foci predict age-dependent emphysema, and late-generation Terc null mice, which harbor dysfunctional telomeres, show early-onset emphysema. We found that cigarette smoke accelerates telomere dysfunction via reactive oxygen species in vitro and may be associated with ataxia telangiectasia mutated-dependent secretion of inflammatory cytokines interleukin-6 and -8. We propose that telomeres are highly sensitive to cigarette smoke-induced damage, and telomere dysfunction may underlie decline of lung function observed during aging and in COPD.


DNA Damage , Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Telomere/genetics , Aged , Aging , Animals , Case-Control Studies , Cell Line , DNA Repair , Epithelial Cells/pathology , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged , Respiratory Mucosa/pathology , Smoking/adverse effects
20.
Nat Commun ; 2: 4172, 2014 Jun 24.
Article En | MEDLINE | ID: mdl-24960204

Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1(-/-) fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1(-/-) tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor.


Aging, Premature/genetics , Fibroblasts/metabolism , Inflammation/genetics , Liver Regeneration/genetics , NF-kappa B p50 Subunit/genetics , Telomere Homeostasis/genetics , Aging, Premature/immunology , Animals , Cellular Senescence/genetics , Cellular Senescence/immunology , Chronic Disease , Cyclooxygenase 2/metabolism , DNA Damage/genetics , DNA Damage/immunology , Feedback, Physiological , Fibroblasts/immunology , Inflammation/immunology , Liver Regeneration/immunology , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/immunology , NF-kappa B p50 Subunit/immunology , Reactive Oxygen Species/metabolism , Regeneration/genetics , Regeneration/immunology , Telomere Homeostasis/immunology
...