Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 109(4-5): 611-625, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34468901

RESUMEN

KEY MESSAGE: Calmodulin-like-proteins (CML) belong to a family of calcium-sensing proteins that are unique for plants and involved in many different developmental and stress-related reactions. In defense against herbivory, some pathogens and drought, CML37 acts as a positive and CML42 as a negative regulator, respectively. We provide evidence that both CMLs act antagonistically in the regulation of induced defense responses. A double knock-out line, cml37 x cml42, thus shows wild-type phenotypes upon all kind of stresses we used. A transient increase in the cytosolic calcium concentration is one of the first reactions that can be measured in plant cells upon abiotic as well as biotic stress treatments. These calcium signals are sensed by calcium binding proteins such as calmodulin-like proteins (CMLs), which transduce the sensed information into appropriate stress responses by interacting with downstream target proteins. In previous studies, CML37 has been shown to positively regulate the plants' defense against both the insect herbivore Spodoptera littoralis and the response to drought stress. In contrast, CML42 is known to negatively regulate those two stress responses. Here, we provide evidence that these two CMLs act antagonistically in the regulation of induced responses directed against drought and herbivory stress as well as in the defense against the necrotrophic pathogen Alternaria brassicicola. Both CMLs shape the plant reactions by altering the phytohormone signaling. Consequently, the phytohormone-regulated production of defensive compounds like glucosinolates is also antagonistically mediated by both CMLs. The finding that CML37 and CML42 have antagonistic roles in diverse stress-related responses suggests that these calcium sensor proteins represent important tools for the plant to balance and fine-tune the signaling and downstream reactions upon environmental stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 9: 1569, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425725

RESUMEN

Phytohormones, especially jasmonates, are known to be mediators of the plant responses to wounding and herbivore feeding. Their role in such stress responses has been largely studied locally in treated leaves. However, less is known about the induced systemic distribution of phytohormone signals upon these kinds of stresses. Here, a holistic approach was performed in order to investigate the systemic phytohormone pattern in the rosette of Arabidopsis thaliana after herbivore-related wounding. Levels of different stress-related phytohormones such as jasmonates, abscisic acid, and salicylic acid were analyzed in individual leaves. We demonstrate that the typically used sampling method, where leaves are first cut and immediately frozen, causes false-positive results since cutting already induces systemic jasmonate elevations within less than 1.6 min. Therefore, this approach is not suitable to study systemic phytohormone changes in the whole plant. By developing a new method where leaves are frozen first and subsequently cut, sampling-induced phytohormone elevations could be reduced. Using this new method, we show that jasmonic acid and its active isoleucine conjugate (jasmonoyl-isoleucine) are involved in the fast systemic wound response of Arabidopsis. A systemic induction of the jasmonates' precursor, 12-oxo-phytodienoic acid, was not observed throughout our treatments. The systemic phytohormone distribution pattern is strongly linked to the vascular connections between the leaves, providing further evidence that the vascular system is used for long distance-signaling in Arabidopsis. Besides already known vascular connections, we also demonstrate that the systemic distribution of jasmonate signals can be extended to distant leaves, which are systemically but indirectly connected via another vascularly connected leaf. This holistic approach covering almost the whole Arabidopsis rosette introduces a method to overcome false-positive results in systemic phytohormone determinations and demonstrates that wounding-induced long-distance signaling includes fast changes in jasmonate levels in systemic, non-treated leaves.

3.
PLoS One ; 13(5): e0197633, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29768484

RESUMEN

Calcium is an important second messenger in plants that is released into the cytosol early after recognition of various environmental stimuli. Decoding of such calcium signals by calcium sensors is the key for the plant to react appropriately to each stimulus. Several members of Calmodulin-like proteins (CMLs) act as calcium sensors and some are known to mediate both abiotic and biotic stress responses. Here, we study the role of the Arabidopsis thaliana CML9 in different stress responses. CML9 was reported earlier as defense regulator against Pseudomonas syringae. In contrast to salicylic acid-mediated defense against biotrophic pathogens such as P. syringae, defenses against herbivores and necrotrophic fungi are mediated by jasmonates. We demonstrate that CML9 is induced upon wounding and feeding of the insect herbivore Spodoptera littoralis. However, neither different CML9 loss-of-function mutant lines nor overexpression lines were impaired upon insect feeding. No difference in herbivore-induced phytohormone elevation was detected in cml9 lines. The defense against the spider mite Tetranychus urticae was also unaffected. In addition, cml9 mutant lines showed a wild type-like reaction to the necrotrophic fungus Alternaria brassicicola. Thus, our data suggest that CML9 might be a regulator involved only in the defense against biotrophic pathogens, independent of jasmonates. In addition, our data challenge the involvement of CML9 in plant drought stress response. Taken together, we suggest that CML9 is a specialized rather than a general regulator of stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calmodulina/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Alternaria , Animales , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Calmodulina/fisiología , Herbivoria , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/fisiología , Tetranychidae
4.
Front Plant Sci ; 8: 388, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28382046

RESUMEN

The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all plant species analyzed so far. Its synthesis is stimulated by either acidic conditions occurring after tissue disruption or higher cytosolic calcium level. In mammals, GABA acts as inhibitory neurotransmitter but its function in plants is still not well understood. Besides its involvement in abiotic stress resistance, GABA has a role in the jasmonate-independent defense against invertebrate pests. While the biochemical basis for GABA accumulation in wounded leaves is obvious, the underlying mechanisms for wounding-induced GABA accumulation in systemic leaves remained unclear. Here, the Arabidopsis thaliana knock-out mutant lines pop2-5, unable to degrade GABA, and tpc1-2, lacking a wounding-induced systemic cytosolic calcium elevation, were employed for a comprehensive investigation of systemic GABA accumulation. A wounding-induced systemic GABA accumulation was detected in tpc1-2 plants demonstrating that an increased calcium level was not involved. Similarly, after both mechanical wounding and Spodoptera littoralis feeding, GABA accumulation in pop2-5 plants was significantly higher in local and systemic leaves, compared to wild-type plants. Consequently, larvae feeding on these GABA-enriched mutant plants grew significantly less. Upon exogenous application of a D2-labeled GABA to wounded leaves of pop2-5 plants, its uptake but no translocation to unwounded leaves was detected. In contrast, an accumulation of endogenous GABA was observed in vascular connected systemic leaves. These results suggest that the systemic accumulation of GABA upon wounding does not depend on the translocation of GABA or on an increase in cytosolic calcium.

5.
Biochim Biophys Acta ; 1851(12): 1545-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26361871

RESUMEN

Jasmonates (JAs) are fatty acid derivatives that mediate many developmental processes and stress responses in plants. Synthetic jasmonate derivatives (commonly isotopically labeled), which mimic the action of the endogenous compounds are often employed as internal standards or probes to study metabolic processes. However, stable-isotope labeling of jasmonates does not allow the study of spatial and temporal distribution of these compounds in real time by positron emission tomography (PET). In this study, we explore whether a fluorinated jasmonate could mimic the action of the endogenous compound and therefore, be later employed as a tracer to study metabolic processes by PET. We describe the synthesis and the metabolism of (Z)-7-fluoro-8-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)octanoic acid (7F-OPC-8:0), a fluorinated analog of the JA precursor OPC-8:0. Like endogenous jasmonates, 7F-OPC-8:0 induces the transcription of marker jasmonate responsive genes (JRG) and the accumulation of jasmonates after its application to Arabidopsis thaliana plants. By using UHPLC-MS/MS, we could show that 7F-OPC-8:0 is metabolized in vivo similarly to the endogenous OPC-8:0. Furthermore, the fluorinated analog was successfully employed as a probe to show its translocation to undamaged systemic leaves when it was applied to wounded leaves. This result suggests that OPC-8:0 - and maybe other oxylipins - may contribute to the mobile signal which triggers systemic defense responses in plants. We highlight the potential of fluorinated oxylipins to study the mode of action of lipid-derived molecules in planta, either by conventional analytical methods or fluorine-based detection techniques.


Asunto(s)
Arabidopsis/metabolismo , Materiales Biomiméticos/farmacología , Caprilatos/metabolismo , Ciclopentanos/metabolismo , Hidrocarburos Fluorados/farmacología , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Materiales Biomiméticos/metabolismo , Hidrocarburos Fluorados/metabolismo
6.
Mol Plant ; 7(12): 1712-26, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25267731

RESUMEN

Throughout their life, plants are challenged by various abiotic and biotic stress factors. Among those are attacks from herbivorous insects. The molecular mechanisms underlying the detection of herbivores and the subsequent signal transduction are not well understood. As a second messenger, fluxes in intracellular Ca(2+) levels play a key role in mediating stress response pathways. Ca(2+) signals are decoded by Ca(2+) sensor proteins such as calmodulin-like proteins (CMLs). Here, we demonstrate that recombinant CML37 behaves like a Ca(2+) sensor in vitro and, in Arabidopsis, AtCML37 is induced by mechanical wounding as well as by infestation with larvae of the generalist lepidopteran herbivore Spodoptera littoralis. Loss of function of CML37 led to a better feeding performance of larvae suggesting that CML37 is a positive defense regulator. No herbivory-induced changes in secondary metabolites such as glucosinolates or flavonoids were detected in cml37 plants, although a significant reduction in the accumulation of jasmonates was observed, due to reduced expression of JAR1 mRNA and cellular enzyme activity. Consequently, the expression of jasmonate-responsive genes was reduced as well. Summarizing, our results suggest that the Ca(2+) sensor protein, CML37, functions as a positive regulator in Ca(2+) signaling during herbivory, connecting Ca(2+) and jasmonate signaling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Señalización del Calcio , Calmodulina/genética , Ciclopentanos/química , Herbivoria , Oxilipinas/química , Animales , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA